Publication:
Strong violation of critical phenomena universality: Wang-Landau study of the two-dimensional Blume-Capel model under bond randomness

dc.contributor.coauthorMalakis, A.
dc.contributor.coauthorHadjiagapiou, I. A.
dc.contributor.coauthorFytas, N. G.
dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorBerker, Ahmet Nihat
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Physics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T12:43:57Z
dc.date.issued2009
dc.description.abstractWe study the pure and random-bond versions of the square lattice ferromagnetic Blume-Capel model, in both the first-order and second-order phase transition regimes of the pure model. Phase transition temperatures, thermal and magnetic critical exponents are determined for lattice sizes in the range L=20-100 via a sophisticated two-stage numerical strategy of entropic sampling in dominant energy subspaces, using mainly the Wang-Landau algorithm. The second-order phase transition, emerging under random bonds from the second-order regime of the pure model, has the same values of critical exponents as the two-dimensional Ising universality class, with the effect of the bond disorder on the specific heat being well described by double-logarithmic corrections, our findings thus supporting the marginal irrelevance of quenched bond randomness. On the other hand, the second-order transition, emerging under bond randomness from the first-order regime of the pure model, has a distinctive universality class with nu=1.30(6) and beta/nu=0.128(5). These results amount to a strong violation of universality principle of critical phenomena, since these two second-order transitions, with different sets of critical exponents, are between the same ferromagnetic and paramagnetic phases. Furthermore, the latter of these two sets of results supports an extensive but weak universality, since it has the same magnetic critical exponent (but a different thermal critical exponent) as a wide variety of two-dimensional systems with and without quenched disorder. In the conversion by bond randomness of the first-order transition of the pure system to second order, we detect, by introducing and evaluating connectivity spin densities, a microsegregation that also explains the increase we find in the phase transition temperature under bond randomness.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipUniversity of Athens
dc.description.sponsorshipAlexander S. Onassis Public Benefit Foundation
dc.description.sponsorshipAcademy of Sciences of Turkey
dc.description.versionPublisher version
dc.description.volume79
dc.formatpdf
dc.identifier.doi10.1103/PhysRevE.79.011125
dc.identifier.eissn1550-2376
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00797
dc.identifier.issn1539-3755
dc.identifier.linkhttps://doi.org/10.1103/PhysRevE.79.011125
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-60749108992
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2381
dc.identifier.wos262976600032
dc.keywordsCritical exponents
dc.keywordsEntropy
dc.keywordsFerromagnetism
dc.keywordsIsing model
dc.keywordsMagnetic transitions
dc.keywordsNumerical analysis
dc.keywordsParamagnetism
dc.keywordsSpecific heat
dc.languageEnglish
dc.publisherAmerican Physical Society (APS)
dc.relation.grantno70/4/4071
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/803
dc.sourcePhysical Review E
dc.subjectMathematical physics
dc.titleStrong violation of critical phenomena universality: Wang-Landau study of the two-dimensional Blume-Capel model under bond randomness
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorBerker, Ahmet Nihat
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
803.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format