Publication:
Improvement of least mean square adaptive algorithm for non-monotonic systems

dc.contributor.coauthorZhang, Zhengyang
dc.contributor.coauthorLiu, Siwei
dc.contributor.coauthorGoetz, Stefan m
dc.contributor.departmentNext Generation and Wireless Communication Laboratory
dc.contributor.kuauthorAkan, Özgür Barış
dc.contributor.schoolcollegeinstituteLaboratory
dc.date.accessioned2025-05-22T10:32:58Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractThis paper introduces the zlLMS algorithm, an improvement over the traditional least mean square (LMS) algorithm, addressing its limitations in handling nonlinear and non- monotonic transfer functions commonly encountered in engineering systems. The proposed method replaces the LMS algorithm's error inputs with a function monotonically correlated with the controllable signal. Through mathematical derivations and simulations, the zlLMS algorithm demonstrates superior performance in nonlinear adaptive filtering scenarios, such as the raised-cosine transfer function of Mach-Zehnder modulators and the Lorentz transfer function of diode lasers. Simulation results reveal that the amplitude difference between the ideal and zlLMS-equalized signals is reduced to 1/1000th of the original input signal's amplitude, underscoring its effectiveness in optics and terahertz technologies. These findings highlight the algorithm's robustness and potential for broad applications in engineering, especially where nonlinear dynamics are involved.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipUniversity of Cambridge
dc.description.versionPublished Version
dc.identifier.doi10.1364/OE.546882
dc.identifier.embargoNo
dc.identifier.endpage4594
dc.identifier.filenameinventorynoIR06153
dc.identifier.issn1094-4087
dc.identifier.issue3
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85218126186
dc.identifier.startpage4582
dc.identifier.urihttps://doi.org/10.1364/OE.546882
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29216
dc.identifier.volume33
dc.identifier.wos001429076200006
dc.keywordsLeast mean square (LMS) algorithm
dc.keywordsAdaptive filtering
dc.keywordsNon-monotonic systems
dc.language.isoeng
dc.publisherOptica Publishing Group
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofOptics Express
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectOptics
dc.titleImprovement of least mean square adaptive algorithm for non-monotonic systems
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameAkan
person.givenNameÖzgür Barış
relation.isOrgUnitOfPublicationa5d3121b-8789-4c71-84d3-12bf643bfef9
relation.isOrgUnitOfPublication.latestForDiscoverya5d3121b-8789-4c71-84d3-12bf643bfef9
relation.isParentOrgUnitOfPublication20385dee-35e7-484b-8da6-ddcc08271d96
relation.isParentOrgUnitOfPublication.latestForDiscovery20385dee-35e7-484b-8da6-ddcc08271d96

Files