Publication:
Time-resolved local strain tracking microscopy for cell mechanics

dc.contributor.coauthorAydın, O.
dc.contributor.coauthorAksoy, B.
dc.contributor.coauthorAkalın, O. B.
dc.contributor.departmentDepartment of Chemistry
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorBayraktar, Halil
dc.contributor.kuauthorAlaca, Burhanettin Erdem
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Chemistry
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T12:26:12Z
dc.date.issued2016
dc.description.abstractA uniaxial cell stretching technique to measure time-resolved local substrate strain while simultaneously imaging adherent cells is presented. The experimental setup comprises a uniaxial stretcher platform compatible with inverted microscopy and transparent elastomer samples with embedded fluorescent beads. This integration enables the acquisition of real-time spatiotemporal data, which is then processed using a single-particle tracking algorithm to track the positions of fluorescent beads for the subsequent computation of local strain. The present local strain tracking method is demonstrated using polydimethylsiloxane (PDMS) samples of rectangular and dogbone geometries. The comparison of experimental results and finite element simulations for the two sample geometries illustrates the capability of the present system to accurately quantify local deformation even when the strain distribution is non-uniform over the sample. For a regular dogbone sample, the experimentally obtained value of local strain at the center of the sample is 77%, while the average strain calculated using the applied cross-head displacement is 48%. This observation indicates that considerable errors may arise when cross-head measurement is utilized to estimate strain in the case of non-uniform sample geometry. Finally, the compatibility of the proposed platform with biological samples is tested using a unibody PDMS sample with a well to contain cells and culture media. HeLa S3 cells are plated on collagen-coated samples and cell adhesion and proliferation are observed. Samples with adherent cells are then stretched to demonstrate simultaneous cell imaging and tracking of embedded fluorescent beads.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.versionPublisher version
dc.formatpdf
dc.identifier.doi10.1063/1.4941715
dc.identifier.eissn1089-7623
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01023
dc.identifier.issn0034-6748
dc.identifier.linkhttps://doi.org/10.1063/1.4941715
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84958211934
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1662
dc.identifier.wos371740900252
dc.keywordsInstruments and instrumentation
dc.languageEnglish
dc.publisherAmerican Institute of Physics (AIP) Publishing
dc.relation.grantno112E580
dc.relation.grantno112T823
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/1022
dc.sourceReview of Scientific Instruments
dc.subjectApplied physics
dc.titleTime-resolved local strain tracking microscopy for cell mechanics
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.kuauthorBayraktar, Halil
local.contributor.kuauthorAlaca, Burhanettin Erdem
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
1022.pdf
Size:
6.25 MB
Format:
Adobe Portable Document Format