Publication:
Virulence factor-related gut microbiota genes and immunoglobulin A levels as novel markers for machine learning-based classification of autism spectrum disorder

Thumbnail Image

School / College / Institute

Organizational Unit

Program

KU-Authors

KU Authors

Co-Authors

Wang, M.
Wan, J.
Zeng, S.
Cai, C.
Zhou, J.
Liu, Y.
Yin, Z.
Zhou, W.

Publication Date

Language

Embargo Status

NO

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental condition for which early identification and intervention is crucial for optimum prognosis. Our previous work showed gut Immunoglobulin A (IgA) to be significantly elevated in the gut lumen of children with ASD compared to typically developing (TD) children. Gut microbiota variations have been reported in ASD, yet not much is known about virulence factor-related gut microbiota (VFGM) genes. Upon determining the VFGM genes distinguishing ASD from TD, this study is the first to utilize VFGM genes and IgA levels for a machine learning-based classification of ASD. Sequence comparisons were performed of metagenome datasets from children with ASD (n = 43) and TD children (n = 31) against genes in the virulence factor database. VFGM gene composition was associated with ASD phenotype. VFGM gene diversity was higher in children with ASD and positively correlated with IgA content. As Group B streptococcus (GBS) genes account for the highest proportion of 24 different VFGMs between ASD and TD and positively correlate with gut IgA, GBS genes were used in combination with IgA and VFGMs diversity to distinguish ASD from TD. Given that VFGM diversity, increases in IgA, and ASD-enriched VFGM genes were independent of sex and gastrointestinal symptoms, a classification method utilizing them will not pertain only to a specific subgroup of ASD. By introducing the classification value of VFGM genes and considering that VFs can be isolated in pregnant women and newborns, these findings provide a novel machine learning-based early risk identification method for ASD.

Source

Publisher

Elsevier

Subject

Medicine

Citation

Has Part

Source

Computational and Structural Biotechnology Journal

Book Series Title

Edition

DOI

10.1016/j.csbj.2020.12.012

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

3

Downloads

View PlumX Details