Publication:
Metric distances between hippocampal shapes indicate different rates of change over time in nondemented and demented subjects

dc.contributor.coauthorBeg, M. F.
dc.contributor.coauthorCeritoglu, C.
dc.contributor.coauthorWang, L.
dc.contributor.coauthorMorris, J. C.
dc.contributor.coauthorCsernansky, J. G.
dc.contributor.coauthorMiller, M. I.
dc.contributor.coauthorRatnanather, J. T.
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorCeyhan, Elvan
dc.contributor.kuprofileUndergraduate Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T12:26:50Z
dc.date.issued2013
dc.description.abstractIn this article, we use longitudinal morphometry (shape and size) measures of hippocampus in subjects with mild dementia of Alzheimer type (DAT) and nondemented controls in logistic discrimination. The morphometric measures we use are volume and metric distance measures at baseline and follow-up (two years apart from baseline). Morphometric differences with respect to a template hippocampus were measured by the metric distance obtained from the large deformation diffeomorphic metric mapping (LDDMM) algorithm. LDDMM assigns metric distances on the space of anatomical images, thereby allowing for the direct comparison and quantization of morphometric changes. We also apply principal component analysis (PCA) on volume and metric distance measures to obtain principal components that capture some salient aspect of morphometry. We construct classifiers based on logistic regression to distinguish diseased and healthy hippocampi (hence potentially diagnose the mild form of DAT). We consider logistic classifiers based on volume and metric distance change over time (from baseline to follow-up), on the raw volumes and metric distances, and on principal components from various types of PCA analysis. We provide a detailed comparison of the performance of these classifiers and guidelines for their practical use. Moreover, combining the information conveyed by volume and metric distance measures by PCA can provide a better biomarker for detection of dementia compared to volume, metric distance, or both.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue8
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipNational Institutes of Health
dc.description.sponsorshipNSF
dc.description.sponsorshipNSERC
dc.description.sponsorshipPacific Alzheimer Research Foundation
dc.description.versionAuthor's final manuscript
dc.description.volume9
dc.formatpdf
dc.identifier.doi10.2174/156720512803251138
dc.identifier.eissn1875-5828
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00231
dc.identifier.issn1567-2050
dc.identifier.linkhttps://doi.org/10.2174/156720512803251138
dc.identifier.quartileQ4
dc.identifier.scopus2-s2.0-84867706622
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1712
dc.identifier.wos309510400010
dc.keywordsComputational anatomy
dc.keywordsDementia of Alzheimer type
dc.keywordsHippocampus
dc.keywordsLarge deformation diffeomorphic metric mapping (LDDMM)
dc.keywordsLogistic discrimination
dc.keywordsMorphometry
dc.keywordsPrincipal component analysis
dc.languageEnglish
dc.publisherBentham Science
dc.relation.grantnoP01 AG03991
dc.relation.grantnoP50 AG05681
dc.relation.grantnoAG05684
dc.relation.grantnoP41-RR15241
dc.relation.grantnoP50
dc.relation.grantnoMH71616
dc.relation.grantnoMH 56584
dc.relation.grantnoDMS-0456253
dc.relation.grantno31-611387
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/1256
dc.sourceCurrent Alzheimer Research
dc.subjectClinical neurology
dc.subjectNeurosciences
dc.subjectNeurology
dc.titleMetric distances between hippocampal shapes indicate different rates of change over time in nondemented and demented subjects
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorCeyhan, Elvan
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
1256.pdf
Size:
277.26 KB
Format:
Adobe Portable Document Format