Publication:
Soft-bodied adaptive multimodal locomotion strategies in fluid-filled confined spaces

dc.contributor.coauthorRen, Z.
dc.contributor.coauthorZhang, R.
dc.contributor.coauthorSoon, R. H.
dc.contributor.coauthorLiu, Z.
dc.contributor.coauthorHu, W.
dc.contributor.coauthorOnck, P. R.
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid297104
dc.date.accessioned2024-11-09T13:24:56Z
dc.date.issued2021
dc.description.abstractSoft-bodied locomotion in fluid-filled confined spaces is critical for future wireless medical robots operating inside vessels, tubes, channels, and cavities of the human body, which are filled with stagnant or flowing biological fluids. However, the active soft-bodied locomotion is challenging to achieve when the robot size is comparable with the cross-sectional dimension of these confined spaces. Here, we propose various control and performance enhancement strategies to let the sheet-shaped soft millirobots achieve multimodal locomotion, including rolling, undulatory crawling, undulatory swimming, and helical surface crawling depending on different fluid-filled confined environments. With these locomotion modes, the sheet-shaped soft robot can navigate through straight or bent gaps with varying sizes, tortuous channels, and tubes with a flowing fluid inside. Such soft robot design along with its control and performance enhancement strategies are promising to be applied in future wireless soft medical robots inside various fluid-filled tight regions of the human body.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue27
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipAdvanced Grant
dc.description.sponsorshipSoMMoR Project
dc.description.sponsorshipGerman Research Foundation (DFG) Soft Material Robotic Systems (SPP 2100) Program
dc.description.sponsorshipMax Planck Society
dc.description.versionPublisher version
dc.description.volume7
dc.formatpdf
dc.identifier.doi10.1126/sciadv.abh2022
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03013
dc.identifier.issn2375-2548
dc.identifier.linkhttps://doi.org/10.1126/sciadv.abh2022
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85109029015
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3430
dc.identifier.wos668591600009
dc.keywordsBiological fluids
dc.keywordsConfined environment
dc.keywordsHelical surfaces
dc.keywordsLocomotion mode
dc.keywordsMedical robots
dc.keywordsMulti-modal locomotion
dc.keywordsPerformance enhancements
dc.keywordsUndulatory swimming
dc.languageEnglish
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.relation.grantno834531
dc.relation.grantno2197/3-1
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9658
dc.sourceScience Advances
dc.subjectScience and technology
dc.titleSoft-bodied adaptive multimodal locomotion strategies in fluid-filled confined spaces
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9658.pdf
Size:
4.8 MB
Format:
Adobe Portable Document Format