Publication:
Cross-context news corpus for protest event-related knowledge base construction

dc.contributor.departmentDepartment of Sociology
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYörük, Erdem
dc.contributor.kuauthorHürriyetoğlu, Ali
dc.contributor.kuauthorGürel, Burak
dc.contributor.kuauthorDuruşan, Fırat
dc.contributor.kuauthorYoltar, Çağrı
dc.contributor.kuauthorMutlu, Osman
dc.contributor.kuauthorYüret, Deniz
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileTeaching Faculty
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileResearcher
dc.contributor.kuprofileResearcher
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Sociology
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid28982
dc.contributor.yokidN/A
dc.contributor.yokid219277
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid179996
dc.date.accessioned2024-11-09T12:29:28Z
dc.date.issued2021
dc.description.abstractWe describe a gold standard corpus of protest events that comprise various local and international English language sources from various countries. The corpus contains document-, sentence-, and token-level annotations. This corpus facilitates creating machine learning models that automatically classify news articles and extract protest event-related information, constructing knowledge bases that enable comparative social and political science studies. For each news source, the annotation starts with random samples of news articles and continues with samples drawn using active learning. Each batch of samples is annotated by two social and political scientists, adjudicated by an annotation supervisor, and improved by identifying annotation errors semi-automatically. We found that the corpus possesses the variety and quality that are necessary to develop and benchmark text classification and event extraction systems in a cross-context setting, contributing to the generalizability and robustness of automated text processing systems. This corpus and the reported results will establish a common foundation in automated protest event collection studies, which is currently lacking in the literature.
dc.description.fulltextYES
dc.description.indexedbyN/A
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipStarting Grant
dc.description.sponsorshipEmerging Welfare
dc.description.versionPublisher version
dc.description.volume3
dc.formatpdf
dc.identifier.doi10.1162/dint_a_00092
dc.identifier.eissn2641-435X
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02859
dc.identifier.linkhttps://doi.org/10.1162/dint_a_00092
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85114000915
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1858
dc.keywordsEvent extraction
dc.keywordsText classification
dc.keywordsPolitical science
dc.keywordsSocial science
dc.keywordsNews
dc.keywordsContentious politics
dc.keywordsProtests
dc.keywordsEvent coreference resolution
dc.languageEnglish
dc.publisherMassachusetts Institute of Technology (MIT) Press
dc.relation.grantno714868
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9423
dc.sourceData Intelligence
dc.subjectSocial science
dc.titleCross-context news corpus for protest event-related knowledge base construction
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-4882-0812
local.contributor.authoridN/A
local.contributor.authorid0000-0002-1666-8748
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.authorid0000-0002-7039-0046
local.contributor.kuauthorYörük, Erdem
local.contributor.kuauthorHürriyetoğlu, Ali
local.contributor.kuauthorGürel, Burak
local.contributor.kuauthorDuruşan, Fırat
local.contributor.kuauthorYoltar, Çağrı
local.contributor.kuauthorMutlu, Osman
local.contributor.kuauthorYüret, Deniz
relation.isOrgUnitOfPublication10f5be47-fab1-42a1-af66-1642ba4aff8e
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery10f5be47-fab1-42a1-af66-1642ba4aff8e

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9423.pdf
Size:
4.73 MB
Format:
Adobe Portable Document Format