Publication:
Deformations of Kolyvagin systems

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorBüyükboduk, Kazım
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T22:57:41Z
dc.date.issued2016
dc.description.abstractOchiai has previously proved that the Beilinson–Kato Euler systems for modular forms interpolate in nearly-ordinary p-adic families (Howard has obtained a similar result for Heegner points), based on which he was able to prove a half of the two-variable main conjectures. The principal goal of this article is to generalize Ochiai’s work in the level of Kolyvagin systems so as to prove that Kolyvagin systems associated to Beilinson–Kato elements interpolate in the full deformation space (in particular, beyond the nearly-ordinary locus), assuming that the deformation problem at hand is unobstructed in the sense of Mazur. We then use what we call universal Kolyvagin systems to attempt a main conjecture over the eigencurve. Along the way, we utilize these objects in order to define a quasicoherent sheaf on the eigencurve that behaves like a p-adic L-function (in a certain sense of the word, in 3-variables).
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume40
dc.identifier.doi10.1007/s40316-015-0044-4
dc.identifier.issn2195-4755
dc.identifier.scopus2-s2.0-85020226880
dc.identifier.urihttps://doi.org/10.1007/s40316-015-0044-4
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7572
dc.keywordsDeformations of Galois representations
dc.keywordsEuler systems
dc.keywordsHida families
dc.keywordsKolyvagin systems
dc.keywordsThe eigencurve
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofAnnales Mathematiques du Quebec
dc.subjectMathematics
dc.titleDeformations of Kolyvagin systems
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorBüyükboduk, Kazım
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files