Publication:
Scene representation technologies for 3DTV - a survey

dc.contributor.coauthorAlatan, A. Aydin
dc.contributor.coauthorGudukbay, Ugur
dc.contributor.coauthorZabulis, Xenophon
dc.contributor.coauthorMueller, Karsten
dc.contributor.coauthorErdem, Cigdem Eroglu
dc.contributor.coauthorWeigel, Christian
dc.contributor.coauthorSmolic, Aljoscha
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYemez, Yücel
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T23:47:37Z
dc.date.issued2007
dc.description.abstract3-D scene representation is utilized during scene extraction, modeling, transmission and display stages of a 3DTV framework. To this end, different representation technologies are proposed to fulfill the requirements of 3DTV paradigm. Dense point-based methods are appropriate for free-view 3DTV applications, since they can generate novel views easily. As surface representations, polygonal meshes are quite popular due to their generality and current hardware support. Unfortunately, there is no inherent smoothness in their description and the resulting renderings may contain unrealistic artifacts. NURBS surfaces have embedded smoothness and efficient tools for editing and animation, but they are more suitable for synthetic content. Smooth subdivision surfaces, which offer a good compromise between polygonal meshes and NURBS surfaces, require, sophisticated geometry modeling tools and are usually difficult to obtain. One recent trend in surface representation is point-based modeling which can meet most of the requirements of 3DTV, however the relevant state-of-the-art is not yet mature enough. On the other hand, volumetric representations encapsulate neighborhood information that is useful for the reconstruction of surfaces with their parallel implementations for multiview stereo algorithms. Apart from, the representation of 3-D structure by different primitives, texturing of scenes is also essential for a realistic scene rendering. Image-based rendering techniques directly render novel views of a scene from the acquired images, since they do not require any, explicit geometry or texture representation. 3-D human face and body modeling facilitate the realistic animation and rendering of human figures that is quite crucial for 3DTV that might demand real-time animation of human bodies. Physically based modeling and animation techniques produce impressive results, thus have potential for use in a 3DTV framework for modeling and animating dynamic scenes. As a concluding remark, it can be argued that 3-D scene and texture representation techniques are mature enough to serve and fulfill the requirements of 3-D extraction, transmission and display sides in a 3DTV scenario.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue11
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume17
dc.identifier.doi10.1109/TCSVT.2007.909974
dc.identifier.eissn1558-2205
dc.identifier.issn1051-8215
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-35648967570
dc.identifier.urihttps://doi.org/10.1109/TCSVT.2007.909974
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14156
dc.identifier.wos250654800015
dc.keywordsAnimation
dc.keywordsDense depth map
dc.keywordsmodeling
dc.keywordsMPEG-4
dc.keywordsNonuniform rational B-spline (NURBS)
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofIEEE Transactions on Circuits and Systems for Video Technology
dc.subjectEngineering, electrical and electronic
dc.titleScene representation technologies for 3DTV - a survey
dc.typeReview
dspace.entity.typePublication
local.contributor.kuauthorYemez, Yücel
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Computer Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files