Publication:
On the importance of hidden bias and hidden entropy in representational efficiency of the Gaussian-Bipolar restricted boltzmann machines

dc.contributor.advisorErzin, Engin
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorIsabekov, Altynbek
dc.contributor.programElectrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.coverage.spatialİstanbul
dc.date.accessioned2024-11-09T22:25:45Z
dc.date.issued2018
dc.format.extent65 leaves : illustrations ; 30 cm.
dc.identifier.urihttps://hdl.handle.net/20.500.14288/5375
dc.keywordsArtificial intelligence
dc.keywordsNeural networks (Computer science)
dc.keywordsYapay öğrenme
dc.keywordsGauss-Bernoulli kısıtlı boltzmann makineleri
dc.language.isoeng
dc.publisherKoç University
dc.relation.collectionKU Theses and Dissertations
dc.rightsrestrictedAccess
dc.rights.copyrightsnote© All Rights Reserved. Accessible to Koç University Affiliated Users Only!
dc.subjectMachine learning
dc.subjectComputational learning theory
dc.titleOn the importance of hidden bias and hidden entropy in representational efficiency of the Gaussian-Bipolar restricted boltzmann machines
dc.typeDissertation
dspace.entity.typePublication
local.contributor.kuauthorIsabekov, Altynbek
relation.isAdvisorOfThesis87fd97a5-902d-42ed-86b0-4624922eec48
relation.isAdvisorOfThesis.latestForDiscovery87fd97a5-902d-42ed-86b0-4624922eec48
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery434c9663-2b11-4e66-9399-c863e2ebae43

Files

Original bundle

Now showing 1 - 1 of 1
Placeholder
Name:
27660.pdf
Size:
2.05 MB
Format:
Adobe Portable Document Format