Publication:
Land use and land cover mapping using deep learning-based segmentation approaches and VHR Worldview-3 images

dc.contributor.departmentDepartment of History
dc.contributor.kuauthorEkim, Burak
dc.contributor.kuauthorKabadayı, Mustafa Erdem
dc.contributor.kuauthorOsgouei, Paria Ettehadi
dc.contributor.kuauthorSertel, Elif
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.date.accessioned2024-11-09T13:23:54Z
dc.date.issued2022
dc.description.abstractDeep learning-based segmentation of very high-resolution (VHR) satellite images is a significant task providing valuable information for various geospatial applications, specifically for land use/land cover (LULC) mapping. The segmentation task becomes more challenging with the increasing number and complexity of LULC classes. In this research, we generated a new benchmark dataset from VHR Worldview-3 images for twelve distinct LULC classes of two different geographical locations. We evaluated the performance of different segmentation architectures and encoders to find the best design to create highly accurate LULC maps. Our results showed that the DeepLabv3+ architecture with an ResNeXt50 encoder achieved the best performance for different metric values with an IoU of 89.46%, an F-1 score of 94.35%, a precision of 94.25%, and a recall of 94.49%. This design could be used by other researchers for LULC mapping of similar classes from different satellite images or for different geographical regions. Moreover, our benchmark dataset can be used as a reference for implementing new segmentation models via supervised, semi- or weakly-supervised deep learning models. In addition, our model results can be used for transfer learning and generalizability of different methodologies.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue18
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorship“Industrialisation and Urban Growth from the mid-nineteenth century Ottoman Empire to Contemporary Turkey in a Comparative Perspective, 1850–2000” Project
dc.description.sponsorshipResearch and Innovation Program
dc.description.sponsorshipUrbanOccupationsOETR
dc.description.versionPublisher version
dc.description.volume14
dc.identifier.doi10.3390/rs14184558
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03977
dc.identifier.issn2072-4292
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85138790632
dc.identifier.urihttps://doi.org/10.3390/rs14184558
dc.identifier.wos859804400001
dc.keywordsImage classification
dc.keywordsImage segmentation
dc.keywordsLand use/land cover
dc.keywordsRemote sensing
dc.keywordsWorldview-3
dc.language.isoeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.relation.grantno679097
dc.relation.ispartofRemote Sensing
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10854
dc.subjectEnvironmental sciences and ecology
dc.subjectGeology
dc.subjectRemote sensing
dc.subjectImaging science and photographic technology
dc.titleLand use and land cover mapping using deep learning-based segmentation approaches and VHR Worldview-3 images
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSertel, Elif
local.contributor.kuauthorEkim, Burak
local.contributor.kuauthorOsgouei, Paria Ettehadi
local.contributor.kuauthorKabadayı, Mustafa Erdem
local.publication.orgunit1College of Social Sciences and Humanities
local.publication.orgunit2Department of History
relation.isOrgUnitOfPublicationbe8432df-d124-44c3-85b4-be586c2db8a3
relation.isOrgUnitOfPublication.latestForDiscoverybe8432df-d124-44c3-85b4-be586c2db8a3
relation.isParentOrgUnitOfPublication3f7621e3-0d26-42c2-af64-58a329522794
relation.isParentOrgUnitOfPublication.latestForDiscovery3f7621e3-0d26-42c2-af64-58a329522794

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10854.pdf
Size:
61.15 MB
Format:
Adobe Portable Document Format