Publication:
Multi-view image registration for wide-baseline visual sensor networks

dc.contributor.coauthorCaner, Gülçin
dc.contributor.coauthorSharma, Gaurav
dc.contributor.coauthorHeinzelman, Wendi
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T23:44:05Z
dc.date.issued2006
dc.description.abstractWe present a new dense multi-view registration technique for wide-baseline video/images that integrates a parametric optical flow-based approach with a sparse set of feature correspondences, based on a locally planar approximation of a nonplanar scene. The proposed method can deal with illuminance variations between the views, which is critically important for wide-baseline applications. It differs from existing work on wide-baseline image registration in that it requires only image information and provides dense matching without computing any camera calibration matrices or performing any prior scene segmentation. These characteristics render the method suitable for practical deployment in visual sensor networks, towards which the current work is directed. We demonstrate the performance of the proposed method on simulated multi-view images of a virtual 3D world composed of piece-wise smooth textured surfaces, as well as real wide-baseline images of nonplanar textured surfaces.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipNational Science Foundation [ECS-0428157] This work is partly supported by the National Science Foundation under grant number ECS-0428157.
dc.identifier.doi10.1109/ICIP.2006.313170
dc.identifier.eissnN/A
dc.identifier.isbn978-1-4244-0481-0
dc.identifier.issn1522-4880
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-78649807641
dc.identifier.urihttps://doi.org/10.1109/ICIP.2006.313170
dc.identifier.urihttps://hdl.handle.net/20.500.14288/13595
dc.identifier.wos245768500093
dc.keywordsLocal image registration
dc.keywordsWide-baseline
dc.keywordsWiener-based
dc.keywordsAffine model estimation
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartof2006 IEEE International Conference on Image Processing, Icip 2006, Proceedings
dc.subjectComputer Science
dc.subjectArtificial intelligence
dc.subjectInformation technology
dc.subjectSoftware engineering
dc.subjectImaging systems in medicine
dc.subjectDiagnostic imaging
dc.titleMulti-view image registration for wide-baseline visual sensor networks
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorTekalp, Ahmet Murat
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files