Publication:
Accelerating Simulations of Bitvector-Based LDP Protocols via Binomial Modeling

dc.conference.date2025-11-25 through 2025-11-27
dc.conference.locationFukuoka
dc.contributor.coauthorKarataş, Yusuf Cemal
dc.contributor.coauthorGürsoy, Mehmet Emre (56888513800)
dc.date.accessioned2025-12-31T08:18:52Z
dc.date.available2025-12-31
dc.date.issued2026
dc.description.abstractLocal Differential Privacy (LDP) has recently emerged as a popular standard for privacy-preserving data collection, and bitvector-based LDP protocols such as RAPPOR and OUE are widely used in both academic and industrial applications. To evaluate LDP protocols and applications, researchers commonly rely on simulation-based experiments, where multiple users’ perturbations are simulated sequentially on one computer. While faithful to protocol definitions, this approach incurs substantial execution times, especially for large user populations and domains. To address this concern and enable fast simulations, in this paper, we propose a novel simulation methodology for bitvector-based LDP protocols. Our key insight is to model the collective effect of randomized perturbation using Binomial random variables, avoiding the need to simulate each user individually. We theoretically and empirically show that this strategy reduces computational complexity while producing unbiased estimations with identical variance to RAPPOR and OUE. Furthermore, we empirically show that our method reduces execution times from several minutes to less than a second, yielding multiple orders of magnitude improvement. Overall, our work offers a fast and scalable method for simulating bitvector-based LDP protocols, with direct applicability to existing works and simulation platforms. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2026.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipBilim Akademisi; Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK, (123E179); Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK
dc.identifier.doi10.1007/978-981-95-4674-9_16
dc.identifier.embargoNo
dc.identifier.endpage325
dc.identifier.isbn9789819698936
dc.identifier.isbn9789819698042
dc.identifier.isbn9789819698110
dc.identifier.isbn9789819698905
dc.identifier.isbn9783032004949
dc.identifier.isbn9789819512324
dc.identifier.isbn9783032026019
dc.identifier.isbn9783032008909
dc.identifier.isbn9783031915802
dc.identifier.isbn9789819698141
dc.identifier.issn0302-9743
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105023473494
dc.identifier.startpage307
dc.identifier.urihttps://doi.org/10.1007/978-981-95-4674-9_16
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31411
dc.identifier.volume16208 LNCS
dc.keywordsbias and variance
dc.keywordsLocal differential privacy
dc.keywordsprivacy protocols
dc.keywordsprivacy-enhancing technologies
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofLecture Notes in Computer Science
dc.relation.ispartof20th International Workshop on Security, IWSEC 2025
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleAccelerating Simulations of Bitvector-Based LDP Protocols via Binomial Modeling
dc.typeConference Proceeding
dspace.entity.typePublication

Files