Publication:
Accelerating simulations of bitvector-based LDP protocols via binomial modeling

dc.conference.dateNOV 25-27, 2025
dc.conference.locationFukuoka
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorGürsoy, Mehmet Emre
dc.contributor.kuauthorKarataş, Yusuf Cemal
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-12-31T08:18:52Z
dc.date.available2025-12-31
dc.date.issued2026
dc.description.abstractLocal Differential Privacy (LDP) has recently emerged as a popular standard for privacy-preserving data collection, and bitvector-based LDP protocols such as RAPPOR and OUE are widely used in both academic and industrial applications. To evaluate LDP protocols and applications, researchers commonly rely on simulation-based experiments, where multiple users’ perturbations are simulated sequentially on one computer. While faithful to protocol definitions, this approach incurs substantial execution times, especially for large user populations and domains. To address this concern and enable fast simulations, in this paper, we propose a novel simulation methodology for bitvector-based LDP protocols. Our key insight is to model the collective effect of randomized perturbation using Binomial random variables, avoiding the need to simulate each user individually. We theoretically and empirically show that this strategy reduces computational complexity while producing unbiased estimations with identical variance to RAPPOR and OUE. Furthermore, we empirically show that our method reduces execution times from several minutes to less than a second, yielding multiple orders of magnitude improvement. Overall, our work offers a fast and scalable method for simulating bitvector-based LDP protocols, with direct applicability to existing works and simulation platforms.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipThis work was supported by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) and the BAGEP Outstanding Young Scientist Award.
dc.identifier.doi10.1007/978-981-95-4674-9_16
dc.identifier.embargoNo
dc.identifier.endpage325
dc.identifier.grantno123E179
dc.identifier.isbn9789819546732
dc.identifier.issn0302-9743
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105023473494
dc.identifier.startpage307
dc.identifier.urihttps://doi.org/10.1007/978-981-95-4674-9_16
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31411
dc.identifier.volume16208 LNCS
dc.keywordsBias and variance
dc.keywordsLocal differential privacy
dc.keywordsPrivacy protocols
dc.keywordsPrivacy-enhancing technologies
dc.language.isoeng
dc.publisherSpringer Nature
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofLecture Notes in Computer Science
dc.relation.ispartof20th International Workshop on Security, IWSEC 2025
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectComputer privacy
dc.subjectComputer engineering
dc.titleAccelerating simulations of bitvector-based LDP protocols via binomial modeling
dc.typeConference Proceeding
dspace.entity.typePublication
person.familyNameGürsoy
person.familyNameKarataş
person.givenNameMehmet Emre
person.givenNameYusuf Cemal
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files