Publication: Separation of CO2 mixtures using zn(bdc)(ted)0.5 membranes and composites: a molecular simulation study
dc.contributor.department | Department of Chemical and Biological Engineering | |
dc.contributor.department | Graduate School of Sciences and Engineering | |
dc.contributor.kuauthor | Eruçar, İlknur | |
dc.contributor.kuauthor | Keskin, Seda | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | GRADUATE SCHOOL OF SCIENCES AND ENGINEERING | |
dc.date.accessioned | 2024-11-10T00:08:07Z | |
dc.date.issued | 2011 | |
dc.description.abstract | We used grand canonical Monte Carlo and equilibrium molecular dynamics simulations to compute adsorption isotherms and self-diffusivities of CH4/H-2 mixtures in a nanoporous metal organic framework Zn(bdc)(ted)(0.5) in our recent study (J. Phys. Chem. C 2010, 114, 13047). in this work, we extended our calculations to CO2/CH4 and CO2/H-2 mixtures by computing adsorption selectivity, diffusion selectivity, and permeation selectivity of Zn(bdc)(ted)(0.5) for these gas mixtures. Performance of several composite membranes including Zn(bdc)(ted)(0.5) as filler particles in polymer matrices was also examined for separation of CO2 from CH4 and H-2 using a combination of atomistic and continuum modeling. Results showed that adding even a small volume fraction of Zn(bdc)(ted)(0.5) into polymers can significantly enhance the gas permeability and carry the polymer/Zn(bdc)(ted)(0.5) composite membranes above the current upper bound established for pure polymer membranes. | |
dc.description.indexedby | WOS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 28 | |
dc.description.openaccess | NO | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.volume | 115 | |
dc.identifier.doi | 10.1021/jp203522u | |
dc.identifier.eissn | 1932-7455 | |
dc.identifier.issn | 1932-7447 | |
dc.identifier.quartile | Q2 | |
dc.identifier.scopus | 2-s2.0-79960412252 | |
dc.identifier.uri | https://doi.org/10.1021/jp203522u | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/16892 | |
dc.identifier.wos | 292892600015 | |
dc.keywords | Metal-organic frameworks | |
dc.keywords | Monte-carlo simulations | |
dc.keywords | Dynamics simulations | |
dc.keywords | Methane adsorption | |
dc.keywords | Porous materials | |
dc.keywords | Gas-adsorption | |
dc.keywords | force-field | |
dc.keywords | Light gases | |
dc.keywords | Cu-btc | |
dc.keywords | Diffusion | |
dc.language.iso | eng | |
dc.publisher | amer Chemical Soc | |
dc.relation.ispartof | Journal of Physical Chemistry C | |
dc.subject | Chemistry | |
dc.subject | Physical | |
dc.subject | Nanoscience | |
dc.subject | Nanotechnology | |
dc.subject | Materials science | |
dc.title | Separation of CO2 mixtures using zn(bdc)(ted)0.5 membranes and composites: a molecular simulation study | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Eruçar, İlknur | |
local.contributor.kuauthor | Keskin, Seda | |
local.publication.orgunit1 | GRADUATE SCHOOL OF SCIENCES AND ENGINEERING | |
local.publication.orgunit1 | College of Engineering | |
local.publication.orgunit2 | Department of Chemical and Biological Engineering | |
local.publication.orgunit2 | Graduate School of Sciences and Engineering | |
relation.isOrgUnitOfPublication | c747a256-6e0c-4969-b1bf-3b9f2f674289 | |
relation.isOrgUnitOfPublication | 3fc31c89-e803-4eb1-af6b-6258bc42c3d8 | |
relation.isOrgUnitOfPublication.latestForDiscovery | c747a256-6e0c-4969-b1bf-3b9f2f674289 | |
relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
relation.isParentOrgUnitOfPublication | 434c9663-2b11-4e66-9399-c863e2ebae43 | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 |