Publication:
An online causal inference framework for modeling and designing systems involving user preferences: a state-space approach

dc.contributor.coauthorKozat, Süleyman Serdar
dc.contributor.departmentDepartment of Media and Visual Arts
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Media and Visual Arts
dc.contributor.kuauthorBaruh, Lemi
dc.contributor.kuauthorDelibalta, İbrahim
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteGraduate School of Social Sciences and Humanities
dc.contributor.yokid36113
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T11:50:38Z
dc.date.issued2017
dc.description.abstractWe provide a causal inference framework to model the effects of machine learning algorithms on user preferences. We then use this mathematical model to prove that the overall system can be tuned to alter those preferences in a desired manner. A user can be an online shopper or a social media user, exposed to digital interventions produced by machine learning algorithms. A user preference can be anything from inclination towards a product to a political party affiliation. Our framework uses a state-space model to represent user preferences as latent system parameters which can only be observed indirectly via online user actions such as a purchase activity or social media status updates, shares, blogs, or tweets. Based on these observations, machine learning algorithms produce digital interventions such as targeted advertisements or tweets. We model the effects of these interventions through a causal feedback loop, which alters the corresponding preferences of the user. We then introduce algorithms in order to estimate and later tune the user preferences to a particular desired form. We demonstrate the effectiveness of our algorithms through experiments in different scenarios.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipKoç University Graduate School of Social Sciences and Humanities
dc.description.sponsorshipBAGEP Award of the Science Academy
dc.description.versionPublisher Version
dc.description.volume2017
dc.formatpdf
dc.identifier.doi10.1155/2017/1048385
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01261
dc.identifier.issn2090-0147
dc.identifier.linkhttps://doi.org/10.1155/2017/1048385
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85022081034
dc.identifier.urihttps://hdl.handle.net/20.500.14288/685
dc.identifier.wos404171000001
dc.keywordsPrediction
dc.keywordsImpact
dc.keywordsTrees
dc.languageEnglish
dc.publisherHindawi
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/3282
dc.sourceJournal of Electrical and Computer Engineering
dc.subjectComputer science
dc.subjectInformation systems
dc.titleAn online causal inference framework for modeling and designing systems involving user preferences: a state-space approach
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-2797-242X
local.contributor.authoridN/A
local.contributor.kuauthorBaruh, Lemi
local.contributor.kuauthorDelibalta, İbrahim
relation.isOrgUnitOfPublication483fa792-2b89-4020-9073-eb4f497ee3fd
relation.isOrgUnitOfPublication.latestForDiscovery483fa792-2b89-4020-9073-eb4f497ee3fd

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
3282.pdf
Size:
850.3 KB
Format:
Adobe Portable Document Format