Publication:
Upconversion nanoparticle-covalent organic framework core-shell particles as therapeutic microrobots trackable with optoacoustic imaging

dc.contributor.coauthorKim, Dong Wook
dc.contributor.coauthorRodríguez-Camargo, Andrés
dc.contributor.coauthorChen, Yi
dc.contributor.coauthorDogan, Nihal Olcay
dc.contributor.coauthorDogan, Nihal Olcay
dc.contributor.coauthorLotsch, Bettina V.
dc.contributor.coauthorRazansky, Daniel
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorFaculty Member, Sitti, Metin
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-05-22T10:35:11Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractDespite the development of various medical imaging contrast agents, integrating contrast signal generation with therapeutic and microrobotic functions remains challenging without complicated fabrication processes. In this study, upconversion nanoparticle-covalent organic framework (UCNP-COF) core-shell sub-micron particles are developed that function as therapeutic microrobots trackable with multi-spectral optoacoustic tomography (MSOT) imaging and can be loaded with desired therapeutic molecular agents in a customizable manner. The mechanism of optoacoustic signal generation in UCNP-COF particles is attributed to the quenching of upconversion luminescence emitted by the UCNPs, which is absorbed by the encapsulating COF and subsequently converted into acoustic waves. Unlike other microparticulate agents previously imaged with MSOT, UCNP-COF particles do not pose concerns about their stability and biocompatibility. Simultaneously, the mesoporous texture of the COF provides a large surface area, allowing for the efficient loading of various drug molecules, which can be released at target sites. Furthermore, the magnetic UCNP-COF Janus particles can be magnetically navigated through in vivo vasculature while being visualized in real-time with volumetric MSOT. This study proposes an approach to design photonic materials with multifunctionality, enabling high-performance medical imaging, drug delivery, and microrobotic manipulation toward their future potential clinical use.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipMax Planck ETH Center for Learning Systems; Max Planck Society; National Research Foundation of Korea [NRF-2022R1A6A3A03053349]; Ministry of Science and ICT of the Republic of Korea; European Research Council (ERC) [834531]; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via the Collaborative Research Center (CRC) [1333/2, 358283783, EXC 2089/1-390776260]; Swiss National Science Foundation (SNSF) [310030_192757]; US National Institutes of Health (NIH) [RF1-NS126102]
dc.description.versionPublished Version
dc.identifier.doi10.1002/adma.202418425
dc.identifier.eissn1521-4095
dc.identifier.embargoNo
dc.identifier.filenameinventorynoIR06228
dc.identifier.issn0935-9648
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-86000737655
dc.identifier.urihttps://doi.org/10.1002/adma.202418425
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29447
dc.identifier.wos001439095100001
dc.keywordsCovalent organic frameworks
dc.keywordsImaging contrast agents
dc.keywordsMicrorobots
dc.keywordsOptoacoustic imaging
dc.keywordsUpconversion nanoparticles
dc.language.isoeng
dc.publisherWiley
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofAdvanced Materials
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectChemistry
dc.subjectScience and technology
dc.subjectMaterials science
dc.subjectPhysics
dc.titleUpconversion nanoparticle-covalent organic framework core-shell particles as therapeutic microrobots trackable with optoacoustic imaging
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery17f2dc8e-6e54-4fa8-b5e0-d6415123a93e

Files