Publication: On maximal partial Latin hypercubes
dc.contributor.coauthor | Donovan, Diane M. | |
dc.contributor.coauthor | Grannell, Mike J. | |
dc.contributor.department | Department of Mathematics | |
dc.contributor.kuauthor | Yazıcı, Emine Şule | |
dc.contributor.other | Department of Mathematics | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.date.accessioned | 2024-12-29T09:41:07Z | |
dc.date.issued | 2023 | |
dc.description.abstract | A lower bound is presented for the minimal number of filled cells in a maximal partial Latin hypercube of dimension d and order n. The result generalises and extends previous results for d= 2 (Latin squares) and d= 3 (Latin cubes). Explicit constructions show that this bound is near-optimal for large n> d . For d> n , a connection with Hamming codes shows that this lower bound gives a related upper bound for the same quantity. The results can be interpreted in terms of independent dominating sets in certain graphs, and in terms of codes that have covering radius 1 and minimum distance at least 2. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | All Open Access | |
dc.description.openaccess | Hybrid Gold Open Access | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | TÜBİTAK | |
dc.description.sponsors | Donovan acknowledges the support of the Australian Government through funding of the Australian Research Council Centre of Excellence for Plant Success in Nature & Agriculture (Project No. CE200100015). Yazıcı acknowledges the support of the Turkish Government through funding by The Scientific and Technological Research Council of Turkey (TUBITAK Grant No.: 121F111). | |
dc.identifier.doi | 10.1007/s10623-023-01314-5 | |
dc.identifier.eissn | 1573-7586 | |
dc.identifier.issn | 0925-1022 | |
dc.identifier.quartile | Q2 | |
dc.identifier.scopus | 2-s2.0-85176553796 | |
dc.identifier.uri | https://doi.org/10.1007/s10623-023-01314-5 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/23539 | |
dc.identifier.wos | 1103668500002 | |
dc.keywords | Codes | |
dc.keywords | Covering radius | |
dc.keywords | Independent dominating sets | |
dc.keywords | Latin hypercubes | |
dc.keywords | Partial Latin hypercubes | |
dc.language | en | |
dc.publisher | Springer | |
dc.relation.grantno | Turkish Government | |
dc.relation.grantno | Australian Government | |
dc.relation.grantno | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (121F111) | |
dc.relation.grantno | Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, (CE200100015) | |
dc.source | Designs, Codes, and Cryptography | |
dc.subject | Computer science | |
dc.subject | Theory | |
dc.subject | Methods | |
dc.subject | Mathematics | |
dc.subject | Applied | |
dc.title | On maximal partial Latin hypercubes | |
dc.type | Journal article | |
dc.type.other | Early access | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Yazıcı, Emine Şule | |
relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe |