Publication:
On maximal partial Latin hypercubes

dc.contributor.coauthorDonovan, Diane M.
dc.contributor.coauthorGrannell, Mike J.
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorYazıcı, Emine Şule
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-12-29T09:41:07Z
dc.date.issued2023
dc.description.abstractA lower bound is presented for the minimal number of filled cells in a maximal partial Latin hypercube of dimension d and order n. The result generalises and extends previous results for d= 2 (Latin squares) and d= 3 (Latin cubes). Explicit constructions show that this bound is near-optimal for large n> d . For d> n , a connection with Hamming codes shows that this lower bound gives a related upper bound for the same quantity. The results can be interpreted in terms of independent dominating sets in certain graphs, and in terms of codes that have covering radius 1 and minimum distance at least 2.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessAll Open Access
dc.description.openaccessHybrid Gold Open Access
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorsDonovan acknowledges the support of the Australian Government through funding of the Australian Research Council Centre of Excellence for Plant Success in Nature & Agriculture (Project No. CE200100015). Yazıcı acknowledges the support of the Turkish Government through funding by The Scientific and Technological Research Council of Turkey (TUBITAK Grant No.: 121F111).
dc.identifier.doi10.1007/s10623-023-01314-5
dc.identifier.eissn1573-7586
dc.identifier.issn0925-1022
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85176553796
dc.identifier.urihttps://doi.org/10.1007/s10623-023-01314-5
dc.identifier.urihttps://hdl.handle.net/20.500.14288/23539
dc.identifier.wos1103668500002
dc.keywordsCodes
dc.keywordsCovering radius
dc.keywordsIndependent dominating sets
dc.keywordsLatin hypercubes
dc.keywordsPartial Latin hypercubes
dc.languageen
dc.publisherSpringer
dc.relation.grantnoTurkish Government
dc.relation.grantnoAustralian Government
dc.relation.grantnoTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (121F111)
dc.relation.grantnoAustralian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, (CE200100015)
dc.sourceDesigns, Codes, and Cryptography
dc.subjectComputer science
dc.subjectTheory
dc.subjectMethods
dc.subjectMathematics
dc.subjectApplied
dc.titleOn maximal partial Latin hypercubes
dc.typeJournal article
dc.type.otherEarly access
dspace.entity.typePublication
local.contributor.kuauthorYazıcı, Emine Şule
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files