Publication:
Structural changes in a Schiff base molecular assembly initiated by scanning tunneling microscopy tip

dc.contributor.coauthorTomak, A.
dc.contributor.coauthorBacaksiz, C.
dc.contributor.coauthorMendirek, G.
dc.contributor.coauthorSahin, H.
dc.contributor.coauthorHur, D.
dc.contributor.coauthorGorgun, K.
dc.contributor.coauthorSenger, R. T.
dc.contributor.coauthorPeeters, F. M.
dc.contributor.coauthorZareie, H. M.
dc.contributor.departmentKUYTAM (Koç University Surface Science and Technology Center)
dc.contributor.kuauthorBirer, Özgür
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2024-11-10T00:11:32Z
dc.date.issued2016
dc.description.abstractWe report the controlled self-organization and switching of newly designed Schiff base (E)-4-((4-(phenylethynyl) benzylidene) amino) benzenethiol (EPBB) molecules on a Au (111) surface at room temperature. Scanning tunneling microscopy and spectroscopy (STM/STS) were used to image and analyze the conformational changes of the EPBB molecules. The conformational change of the molecules was induced by using the STM tip while increasing the tunneling current. The switching of a domain or island of molecules was shown to be induced by the STM tip during scanning. Unambiguous fingerprints of the switching mechanism were observed via STM/STS measurements. Surface-enhanced Raman scattering was employed, to control and identify quantitatively the switching mechanism of molecules in a monolayer. Density functional theory calculations were also performed in order to understand the microscopic details of the switching mechanism. These calculations revealed that the molecular switching behavior stemmed from the strong interaction of the EPBB molecules with the STM tip. Our approach to controlling intermolecular mechanics provides a path towards the bottom-up assembly of more sophisticated molecular machines.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue33
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipTUBITAK[112T507]
dc.description.sponsorshipFlemish Science Foundation (FWO-Vl)
dc.description.sponsorshipFWO Pegasus Long Marie Curie Fellowship The authors acknowledge financial support from TUBITAK(PROJECT NO: 112T507). This work was also supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAKULAKBIM, High Performance and Grid Computing Center (TR-Grid-Infrastructure). HS is supported by an FWO Pegasus Long Marie Curie Fellowship.
dc.description.volume27
dc.identifier.doi10.1088/0957-4484/27/33/335601
dc.identifier.eissn1361-6528
dc.identifier.issn0957-4484
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-84978872808
dc.identifier.urihttps://doi.org/10.1088/0957-4484/27/33/335601
dc.identifier.urihttps://hdl.handle.net/20.500.14288/17492
dc.identifier.wos383780500012
dc.keywordsSchiff base molecule
dc.keywordsSelf-assembled monolayers
dc.keywordsScanning tunneling microscopy
dc.keywordsSwitches
dc.language.isoeng
dc.publisherInstitute of Physics (IOP) Publishing
dc.relation.ispartofNanotechnology
dc.subjectNanoscience
dc.subjectNanotechnology
dc.subjectMaterials science
dc.subjectPhysics
dc.subjectApplied physics
dc.titleStructural changes in a Schiff base molecular assembly initiated by scanning tunneling microscopy tip
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorBirer, Özgür
local.publication.orgunit1Research Center
local.publication.orgunit2KUYTAM (Koç University Surface Science and Technology Center)
relation.isOrgUnitOfPublicationd41f66ba-d7a4-4790-9f8f-a456c391209b
relation.isOrgUnitOfPublication.latestForDiscoveryd41f66ba-d7a4-4790-9f8f-a456c391209b
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscoveryd437580f-9309-4ecb-864a-4af58309d287

Files