Publication: Two-body problem in a multiband lattice and the role of quantum geometry
Files
Program
KU-Authors
KU Authors
Co-Authors
Advisor
Publication Date
Language
English
Type
Journal Title
Journal ISSN
Volume Title
Abstract
We consider the two-body problem in a periodic potential, and study the bound-state dispersion of a spin-up arrow fermion that is interacting with a spin-down arrow fermion through a short-range attractive interaction. Based on a variational approach, we obtain the exact solution of the dispersion in the form of a set of self-consistency equations, and apply it to tight-binding Hamiltonians with on-site interactions. We pay special attention to the bipartite lattices with a two-point basis that exhibit time-reversal symmetry, and show that the lowest-energy bound states disperse quadratically with momentum, whose effective-mass tensor is partially controlled by the quantum metric tensor of the underlying Bloch states. In particular, we apply our theory to the Mielke checkerboard lattice, and study the special role played by the interband processes in producing a finite effective mass for the bound states in a nonisolated flat band.
Source:
Physical Review A
Publisher:
American Physical Society (APS)
Keywords:
Subject
Optics, Physics