Publication:
Final Gleason score prediction using discriminant analysis and support vector machine based on preoperative multiparametric MR imaging of prostate cancer at 3T

dc.contributor.coauthorÇıtak-Er, Füsun
dc.contributor.coauthorVural, Metin
dc.contributor.coauthorOnay, Aslıhan
dc.contributor.coauthorÖztürk-Işık, Esin
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorEsen, Tarık
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T13:07:36Z
dc.date.issued2014
dc.description.abstractObjective. This study aimed at evaluating linear discriminant analysis (LDA) and support vector machine (SVM) classifiers for estimating final Gleason score preoperatively using multiparametric magnetic resonance imaging (mp-MRI) and clinical parameters. Materials and Methods. Thirty-three patients who underwent mp-MRI on a 3T clinical MR scanner and radical prostatectomy were enrolled in this study. The input features for classifiers were age, the presence of a palpable prostate abnormality, prostate specific antigen (PSA) level, index lesion size, and Likert scales of T2 weighted MRI (T2w-MRI), diffusion weighted MRI (DW-MRI), and dynamic contrast enhanced MRI (DCE-MRI) estimated by an experienced radiologist. SVM based recursive feature elimination (SVM-RFE) was used for eliminating features. Principal component analysis (PCA) was applied for data uncorrelation. Results. Using a standard PCA before final Gleason score classification resulted in mean sensitivities of 51.19% and 64.37% andmean specificities of 72.71% and 39.90% for LDA and SVM, respectively. Using a Gaussian kernel PCA resulted in mean sensitivities of 86.51% and 87.88% and mean specificities of 63.99% and 56.83% for LDA and SVM, respectively. Conclusion. SVM classifier resulted in a slightly higher sensitivity but a lower specificity than LDA method for final Gleason score prediction for prostate cancer for this limited patient population.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU - TÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipEuropean Union Marie Curie IRG Grant
dc.description.versionPublisher version
dc.description.volume2014
dc.identifier.doi10.1155/2014/690787
dc.identifier.eissn2314-6141
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00368
dc.identifier.issn2314-6133
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-84918569184
dc.identifier.urihttps://doi.org/10.1155/2014/690787
dc.identifier.wos347321800001
dc.keywordsContrast-enhanced Mri
dc.keywordsComputer-aided diagnosis
dc.keywordsRadical prostatectomy
dc.keywordsDce-Mri
dc.keywordsManagement
dc.keywordsBiopsy
dc.keywordsPerspective
dc.keywordsAntigen
dc.keywordsLesions
dc.language.isoeng
dc.publisherHindawi
dc.relation.grantno112E036
dc.relation.grantnoFP7-PEOPLE-RG-2009 256528
dc.relation.ispartofBiomed Research International
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/1389
dc.subjectMedicine
dc.subjectUrology
dc.subjectBiotechnology and applied microbiology
dc.titleFinal Gleason score prediction using discriminant analysis and support vector machine based on preoperative multiparametric MR imaging of prostate cancer at 3T
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorEsen, Tarık
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery17f2dc8e-6e54-4fa8-b5e0-d6415123a93e

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
1389.pdf
Size:
733.89 KB
Format:
Adobe Portable Document Format