Publication:
Enzymatic spiroketal formation via oxidative rearrangement of pentangular polyketides

dc.contributor.coauthorFrensch, Britta
dc.contributor.coauthorLechtenberg, Thorsten
dc.contributor.coauthorKather, Michel
dc.contributor.coauthorBetschart, Martin
dc.contributor.coauthorKammerer, Bernd
dc.contributor.coauthorLuedeke, Steffen
dc.contributor.coauthorMueller, Michael
dc.contributor.coauthorPiel, Joern
dc.contributor.coauthorTeufel, Robin
dc.contributor.departmentDepartment of Molecular Biology and Genetics
dc.contributor.kuauthorYunt, Zeynep Sabahat
dc.contributor.kuprofileTeaching Faculty
dc.contributor.otherDepartment of Molecular Biology and Genetics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid116178
dc.date.accessioned2024-11-09T11:42:45Z
dc.date.issued2021
dc.description.abstractThe structural complexity and bioactivity of natural products often depend on enzymatic redox tailoring steps. This is exemplified by the generation of the bisbenzannulated [5,6]-spiroketal pharmacophore in the bacterial rubromycin family of aromatic polyketides, which exhibit a wide array of bioactivities such as the inhibition of HIV reverse transcriptase or DNA helicase. Here we elucidate the complex flavoenzyme-driven formation of the rubromycin pharmacophore that is markedly distinct from conventional (bio)synthetic strategies for spiroketal formation. Accordingly, a polycyclic aromatic precursor undergoes extensive enzymatic oxidative rearrangement catalyzed by two flavoprotein monooxygenases and a flavoprotein oxidase that ultimately results in a drastic distortion of the carbon skeleton. The one-pot in vitro reconstitution of the key enzymatic steps as well as the comprehensive characterization of reactive intermediates allow to unravel the intricate underlying reactions, during which four carbon-carbon bonds are broken and two CO2 become eliminated. This work provides detailed insight into perplexing redox tailoring enzymology that sets the stage for the (chemo)enzymatic production and bioengineering of bioactive spiroketal-containing polyketides.Rubromycin family of natural products belongs to aromatic polyketides with diverse bioactivities, but details of their biosynthesis are limited. Here, the authors report the complete in vitro reconstitution of enzymatic formation of the spiroketal moiety of rubromycin polyketides, driven by flavin-dependent enzymes, and characterize reaction intermediates.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipDFG Grants
dc.description.sponsorshipBaden-Württemberg
dc.description.sponsorshipbwHPC
dc.description.sponsorshipProjekt DEAL
dc.description.versionPublisher version
dc.description.volume12
dc.formatpdf
dc.identifier.doi10.1038/s41467-021-21432-9
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02789
dc.identifier.issn2041-1723
dc.identifier.linkhttps://doi.org/10.1038/s41467-021-21432-9
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85101975546
dc.identifier.urihttps://hdl.handle.net/20.500.14288/251
dc.identifier.wos626131800001
dc.languageEnglish
dc.publisherNature Publishing Group (NPG)
dc.relation.grantno235777276/GRK1976
dc.relation.grantno TE 931/2-1
dc.relation.grantno TE 931/3-1
dc.relation.grantno TE 931/4-1
dc.relation.grantnoINST 40/575-1 FUGG
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9440
dc.sourceNature Communications
dc.subjectScience and technology
dc.titleEnzymatic spiroketal formation via oxidative rearrangement of pentangular polyketides
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-5307-8651
local.contributor.kuauthorYunt, Zeynep Sabahat
relation.isOrgUnitOfPublicationaee2d329-aabe-4b58-ba67-09dbf8575547
relation.isOrgUnitOfPublication.latestForDiscoveryaee2d329-aabe-4b58-ba67-09dbf8575547

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9440.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format