Publication:
Federated dropout learning for hybrid beamforming with spatial path index modulation in multi-user MMWave-MIMO systems

dc.contributor.coauthorMishra, Kumar Vijay
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorErgen, Sinem Çöleri
dc.contributor.kuauthorElbir, Ahmet Musab
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid7211
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T13:08:12Z
dc.date.issued2021
dc.description.abstractMillimeter wave multiple-input multiple-output (mmWave-MIMO) systems with small number of radio-frequency (RF) chains have limited multiplexing gain. Spatial path index modulation (SPIM) is helpful in improving this gain by utilizing additional signal bits modulated by the indices of spatial paths. In this paper, we introduce model-based and model-free frameworks for beamformer design in multi-user SPIM-MIMO systems. We first design the beamformers via model-based manifold optimization algorithm. Then, we leverage federated learning (FL) with dropout learning (DL) to train a learning model on the local dataset of users, who estimate the beamformers by feeding the model with their channel data. The DL randomly selects different set of model parameters during training, thereby further reducing the transmission overhead compared to conventional FL. Numerical experiments show that the proposed framework exhibits higher spectral efficiency than the state-of-the-art SPIM-MIMO methods and mmWave-MIMO, which relies on the strongest propagation path. Furthermore, the proposed FL approach provides at least 10 times lower transmission overhead than the centralized learning techniques.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipCHIST-ERA
dc.description.versionAuthor's final manuscript
dc.formatpdf
dc.identifier.doi10.1109/ICASSP39728.2021.9414120
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03232
dc.identifier.isbn978-1-7281-7605-5
dc.identifier.issn1520-6149
dc.identifier.linkhttps://doi.org/10.1109/ICASSP39728.2021.9414120
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85114821316
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2669
dc.identifier.wos704288408099
dc.keywordsDropout learning
dc.keywordsFederated learning
dc.keywordsManifold optimization
dc.keywordsMassive MIMO
dc.keywordsSpatial modulation
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantno1.79769313486232E+308
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10016
dc.sourceICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
dc.subjectAcoustics
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectSoftware engineering
dc.subjectElectrical and electronic engineering
dc.subjectImaging science
dc.subjectPhotographic technology
dc.titleFederated dropout learning for hybrid beamforming with spatial path index modulation in multi-user MMWave-MIMO systems
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-7502-3122
local.contributor.authoridN/A
local.contributor.kuauthorErgen, Sinem Çöleri
local.contributor.kuauthorElbir, Ahmet Musab
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10016.pdf
Size:
553.37 KB
Format:
Adobe Portable Document Format