Publication:
Artificial intelligence approaches to human-microbiome protein-protein interactions

dc.contributor.coauthorLim, Hansaim
dc.contributor.coauthorTsai, Chung-Jung
dc.contributor.coauthorNussinov, Ruth
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorGürsoy, Attila
dc.contributor.kuauthorKeskin, Özlem
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.otherDepartment of Chemical and Biological Engineering
dc.contributor.researchcenterKoç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM)
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid8745
dc.contributor.yokid26605
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T13:14:12Z
dc.date.issued2022
dc.description.abstractHost-microbiome interactions play significant roles in human health and disease. Artificial intelligence approaches have been developed to better understand and predict the molecular interplay between the host and its microbiome. Here, we review recent advancements in computational methods to predict microbial effects on human cells with a special focus on protein–protein interactions. We categorize recent methods from traditional ones to more recent deep learning methods, followed by several challenges and potential solutions in structure-based approaches. This review serves as a brief guide to the current status and future directions in the field.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipNational Cancer Institute
dc.description.sponsorshipNational Institutes of Health
dc.description.sponsorshipHealth Institutes of Turkiye (TÜSEB)
dc.description.sponsorshipNIH Intramural Research Program
dc.description.sponsorshipCenter for Cancer Research
dc.description.versionPublisher version
dc.description.volume73
dc.formatpdf
dc.identifier.doi10.1016/j.sbi.2022.102328
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03493
dc.identifier.issn0959-440X
dc.identifier.linkhttps://doi.org/10.1016/j.sbi.2022.102328
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85124273887
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2967
dc.identifier.wos829027900015
dc.keywordsArtificial intelligence
dc.keywordsHumans
dc.keywordsMicrobiota
dc.languageEnglish
dc.publisherElsevier
dc.relation.grantnoHHSN26120080001
dc.relation.grantnoTUSEB 4081/4448
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10288
dc.sourceCurrent Opinion in Structural Biology
dc.subjectBioinformatics
dc.subjectTwo-hybrid system techniques
dc.subjectPosition weight matrix
dc.titleArtificial intelligence approaches to human-microbiome protein-protein interactions
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-2297-2113
local.contributor.authorid0000-0002-4202-4049
local.contributor.authoridN/A
local.contributor.kuauthorGürsoy, Attila
local.contributor.kuauthorKeskin, Özlem
local.contributor.kuauthorÇankara Fatma
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10288.pdf
Size:
975.26 KB
Format:
Adobe Portable Document Format