Publication:
Explainable and Robust Millimeter Wave Beam Alignment for AI-Native 6G Networks

dc.conference.locationMontreal; QC
dc.contributor.coauthorKhan, Nasir (57483710100)
dc.contributor.coauthorAbdallah, Asmaa (56911915300)
dc.contributor.coauthorCelik, Abdulkadir (56542749700)
dc.contributor.coauthorEltawil, Ahmed M. (55939256800)
dc.contributor.coauthorColeri, Sinem (9133370600)
dc.date.accessioned2025-12-31T08:21:13Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractIntegrated artificial intelligence (AI) and communication has been recognized as a key pillar of 6 G and beyond networks. In line with AI-native 6 G vision, explainability and robustness in AI-driven systems are critical for establishing trust and ensuring reliable performance in diverse and evolving environments. This paper addresses these challenges by developing a robust and explainable deep learning (DL)-based beam alignment engine (BAE) for millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. The proposed convolutional neural network (CNN)-based BAE utilizes received signal strength indicator (RSSI) measurements over a set of wide beams to accurately predict the best narrow beam for each UE, significantly reducing the overhead associated with exhaustive codebook-based narrow beam sweeping for initial access (IA) and data transmission. To ensure transparency and resilience, the Deep k-Nearest Neighbors (DkNN) algorithm is employed to assess the internal representations of the network via nearest neighbor approach, providing human-interpretable explanations and confidence metrics for detecting out-of-distribution inputs. Experimental results demonstrate that the proposed DL-based BAE exhibits robustness to measurement noise, reduces beam training overhead by 75% compared to the exhaustive search while maintaining near-optimal performance in terms of spectral efficiency. Moreover, the proposed framework improves outlier detection robustness by up to 5 × and offers clearer insights into beam prediction decisions compared to traditional softmax-based classifiers. © 2025 Elsevier B.V., All rights reserved.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/ICC52391.2025.11161537
dc.identifier.eissn0536-1486
dc.identifier.embargoNo
dc.identifier.endpage758
dc.identifier.isbn9781538674628
dc.identifier.isbn9781612842332
dc.identifier.isbn0780300068
dc.identifier.isbn9781467331227
dc.identifier.isbn9781538680889
dc.identifier.isbn078030599X
dc.identifier.isbn9781424403530
dc.identifier.isbn0780309510
dc.identifier.isbn9781612849553
dc.identifier.isbn9781467381963
dc.identifier.issn1550-3607
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105018458002
dc.identifier.startpage753
dc.identifier.urihttps://doi.org/10.1109/ICC52391.2025.11161537
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31572
dc.keywords6G networks
dc.keywordseXplainable AI (XAI)
dc.keywordsmmWave communications
dc.keywordsRobustness
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofInternational Conference on Communications
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleExplainable and Robust Millimeter Wave Beam Alignment for AI-Native 6G Networks
dc.typeConference Proceeding
dspace.entity.typePublication

Files