Publication:
A Markov modulated Poisson model for software reliability

dc.contributor.coauthorLandon, Joshua
dc.contributor.coauthorSoyer, Refik
dc.contributor.departmentDepartment of Industrial Engineering
dc.contributor.kuauthorÖzekici, Süleyman
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Industrial Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid32631
dc.date.accessioned2024-11-09T23:34:18Z
dc.date.issued2013
dc.description.abstractIn this paper, we consider a latent Markov process governing the intensity rate of a Poisson process model for software failures. The latent process enables us to infer performance of the debugging operations over time and allows us to deal with the imperfect debugging scenario. We develop the Bayesian inference for the model and also introduce a method to infer the unknown dimension of the Markov process. We illustrate the implementation of our model and the Bayesian approach by using actual software failure data.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.volume229
dc.identifier.doi10.1016/j.ejor.2013.03.014
dc.identifier.eissn1872-6860
dc.identifier.issn0377-2217
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-84876958120
dc.identifier.urihttp://dx.doi.org/10.1016/j.ejor.2013.03.014
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12327
dc.identifier.wos319307600011
dc.keywordsSoftware reliability
dc.keywordsHidden Markov model
dc.keywordsBayesian inference
dc.languageEnglish
dc.publisherElsevier
dc.sourceEuropean Journal of Operational Research
dc.subjectManagement
dc.subjectOperations research
dc.subjectManagement science
dc.titleA Markov modulated Poisson model for software reliability
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-3610-1746
local.contributor.kuauthorÖzekici, Süleyman
relation.isOrgUnitOfPublicationd6d00f52-d22d-4653-99e7-863efcd47b4a
relation.isOrgUnitOfPublication.latestForDiscoveryd6d00f52-d22d-4653-99e7-863efcd47b4a

Files