Publication:
Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic carnot engine

dc.contributor.coauthorTürkpençe, Deniz
dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T12:17:31Z
dc.date.issued2016
dc.description.abstractWe investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003)], to the case of N + 1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipKoç University
dc.description.sponsorshipLockheed Martin Corp.
dc.description.versionPublisher version
dc.description.volume93
dc.identifier.doi10.1103/PhysRevE.93.012145
dc.identifier.eissn2470-0053
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00420
dc.identifier.issn2470-0045
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-84957545805
dc.identifier.urihttps://doi.org/10.1103/PhysRevE.93.012145
dc.identifier.wos369332400001
dc.keywordsFluids and plasmas
dc.keywordsMathematical physics
dc.keywordsSingle heat bath
dc.keywordsExtracting work
dc.keywordsEnergy
dc.keywordsSystems
dc.keywordsCavity
dc.keywordsCycle
dc.language.isoeng
dc.publisherAmerican Physical Society (APS)
dc.relation.ispartofPhysical Review E
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/454
dc.subjectPhysics
dc.titleQuantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic carnot engine
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Physics
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
454.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format