Publication:
Learn2dance: learning statistical music-to-dance mappings for choreography synthesis

Placeholder

School / College / Institute

Organizational Unit

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

We propose a novel framework for learning many-to-many statistical mappings from musical measures to dance figures towards generating plausible music-driven dance choreographies. We obtain music-to-dance mappings through use of four statistical models: 1) musical measure models, representing a many-to-one relation, each of which associates different melody patterns to a given dance figure via a hidden Markov model (HMM); 2) exchangeable figures model, which captures the diversity in a dance performance through a one-to-many relation, extracted by unsupervised clustering of musical measure segments based on melodic similarity; 3) figure transition model, which captures the intrinsic dependencies of dance figure sequences via an n-gram model; 4) dance figure models, capturing the variations in the way particular dance figures are performed, by modeling the motion trajectory of each dance figure via an HMM. Based on the first three of these statistical mappings, we define a discrete HMM and synthesize alternative dance figure sequences by employing a modified Viterbi algorithm. The motion parameters of the dance figures in the synthesized choreography are then computed using the dance figure models. Finally, the generated motion parameters are animated synchronously with the musical audio using a 3-D character model. Objective and subjective evaluation results demonstrate that the proposed framework is able to produce compelling music-driven choreographies.

Source

Publisher

IEEE-Inst Electrical Electronics Engineers Inc

Subject

Computer science, Information systems, Engineering, Software engineering, Telecommunications

Citation

Has Part

Source

IEEE Transactions on Multimedia

Book Series Title

Edition

DOI

10.1109/TMM.2011.2181492

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details