Publication: Metal-support interaction in PT nanodisk-carbon nitride catalyst: insight from theory and experiment
Program
KU-Authors
KU Authors
Co-Authors
Doustkhah, Esmail
Kotb, Ahmed
Assadi, Mohammad Hussein Naseef
Advisor
Publication Date
2024
Language
en
Type
Journal article
Journal Title
Journal ISSN
Volume Title
Abstract
Metal-support interaction plays a critical role in determining the eventual catalytic activity of metals loaded on supporting substrates. This interaction can sometimes cause a significant drop in the metallic property of the loaded metal and, hence, a drop in catalytic activity in the reactions, especially in those for which low charge carrier transfer resistance is a necessary parameter. Therefore, there should be a case-by-case experimental or theoretical (or both) in-depth investigation to understand the role of support on each metal. Here, onto a layered porous carbon nitride (g-CN), we grew single crystalline Pt nanodisks (Pt@g-CN) with a lateral average size of 21 nm, followed by various characterisations such as electron microscopy techniques, and the measurement of electrocatalytic activity in the O-2 reduction reaction (ORR). We found that intercalating Pt nanodisks in the g-CN interlayers causes an increase in electrocatalytic activity. We investigated the bonding mechanism between carbon support and platinum using density functional theory and applied the d-band theory to understand the catalytic performance. Analysis of Pt's density of states and electronic population across layers sheds light on the catalytic behaviour of Pt nanoparticles, particularly in relation to their thickness and proximity to the g-CN support interface. Our simulation reveals an optimum thickness of similar to 11 angstrom, under which the catalytic performance deteriorates.
Description
Source:
NANOMATERIALS
Publisher:
MDPI
Keywords:
Subject
Chemistry, Multidisciplinary, Nanoscience, Nanotechnology, Materials science, Physics, Applied