Publication:
A characterization of the closed unital ideals of the Fourier-Stieltjes algebra B(G) of a locally compact amenable group G

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorÜlger, Ali
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:21:39Z
dc.date.issued2003
dc.description.abstractLet G be a locally compact amenable group, B(G) its Fourier–Stieltjes algebra and I be a closed ideal of it. In this paper we prove the following result: The ideal I has a unit element iff it is principal. This is the noncommutative version of the Glicksberg–Host–Parreau Theorem. The paper also contains an abstract version of this theorem.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume205
dc.identifier.doi10.1016/S0022-1236(03)00143-5
dc.identifier.issn0022-1236
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-0346269090
dc.identifier.urihttps://doi.org/10.1016/S0022-1236(03)00143-5
dc.identifier.urihttps://hdl.handle.net/20.500.14288/10930
dc.identifier.wos186950100004
dc.keywordsMultiplier
dc.keywordsFourier algebra
dc.keywordsFourier-Stieltjes algebra
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofJournal of Functional Analysis
dc.subjectMathematics
dc.titleA characterization of the closed unital ideals of the Fourier-Stieltjes algebra B(G) of a locally compact amenable group G
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorÜlger, Ali
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files