Publication:
High shear rate propulsion of acoustic microrobots in complex biological fluids

dc.contributor.coauthorAghakhani, Amirreza
dc.contributor.coauthorPena-Francesch, Abdon
dc.contributor.coauthorBozuyuk, Uğur
dc.contributor.coauthorÇetin, Hakan
dc.contributor.coauthorWrede, Paul
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T13:08:23Z
dc.date.issued2022
dc.description.abstractUntethered microrobots offer a great promise for localized targeted therapy in hard-to-access spaces in our body. Despite recent advancements, most microrobot propulsion capabilities have been limited to homogenous Newtonian fluids. However, the biological fluids present in our body are heterogeneous and have shear rate–dependent rheological properties, which limit the propulsion of microrobots using conventional designs and actuation methods. We propose an acoustically powered microrobotic system, consisting of a three-dimensionally printed 30-micrometer-diameter hollow body with an oscillatory microbubble, to generate high shear rate fluidic flow for propulsion in complex biofluids. The acoustically induced microstreaming flow leads to distinct surface-slipping and puller-type propulsion modes in Newtonian and non-Newtonian fluids, respectively. We demonstrate efficient propulsion of the microrobots in diverse biological fluids, including in vitro navigation through mucus layers on biologically relevant three-dimensional surfaces. The microrobot design and high shear rate propulsion mechanism discussed herein could open new possibilities to deploy microrobots in complex biofluids toward minimally invasive targeted therapy.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue10
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipMax Planck Society
dc.description.versionPublisher version
dc.description.volume8
dc.identifier.doi10.1126/sciadv.abm5126
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03530
dc.identifier.issn2375-2548
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85126389455
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2685
dc.identifier.wos800003800015
dc.keywordsDriven
dc.keywordsSoft
dc.keywordsDynamics
dc.keywordsForces
dc.keywordsMucus
dc.language.isoeng
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.relation.grantnoNA
dc.relation.ispartofScience Advances
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10326
dc.subjectScience and technology
dc.titleHigh shear rate propulsion of acoustic microrobots in complex biological fluids
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10326.pdf
Size:
1.87 MB
Format:
Adobe Portable Document Format