Publication:
Ultra-high reliability by predictive interference management using extreme value theory

dc.conference.date8 June 2025 - 12 June 2025
dc.conference.locationMontreal
dc.contributor.coauthorSalehi, Fateme
dc.contributor.coauthorMahmood, Aamir
dc.contributor.coauthorGidlund, Mikael
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorErgen, Sinem Çöleri
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-12-31T08:25:20Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractUltra-reliable low-latency communications (URLLC) require innovative approaches to modeling channel and interference dynamics, extending beyond traditional average estimates to encompass entire statistical distributions, including rare and extreme events that challenge achieving ultra-reliability performance regions. In this paper, we propose a risk-sensitive approach based on extreme value theory (EVT) to predict the signal-to-interference-plus-noise ratio (SINR) for efficient resource allocation in URLLC systems. We employ EVT to estimate the statistics of rare and extreme interference values, and kernel density estimation (KDE) to model the distribution of non-extreme events. Using a mixture model, we develop an interference prediction algorithm based on quantile prediction, introducing a confidence level parameter to balance reliability and resource usage. While accounting for the risk sensitivity of interference estimates, the prediction outcome is then used for appropriate resource allocation of a URLLC transmission under link outage constraints. Simulation results demonstrate that the proposed method outperforms the state-of-the-art first-order discrete-time Markov chain (DTMC) approach by reducing outage rates up to 100 -fold, achieving target outage probabilities as low as 10-7). Simultaneously, it minimizes radio resource usage ∼ 15% compared to DTMC, while remaining only ∼ 20% above the optimal case with perfect interference knowledge, resulting in significantly higher prediction accuracy. Additionally, the method is sample-efficient, able to predict interference effectively with minimal training data. © 2025 Elsevier B.V., All rights reserved.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipKnowledge Foundation
dc.description.sponsorshipNanjing Institute of Industry Technology (NIIT)
dc.identifier.doi10.1109/ICC52391.2025.11161826
dc.identifier.eissn0536-1486
dc.identifier.embargoNo
dc.identifier.endpage2543
dc.identifier.grantno121C314
dc.identifier.isbn9798331505219
dc.identifier.issn1550-3607
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105018457686
dc.identifier.startpage2538
dc.identifier.urihttps://doi.org/10.1109/ICC52391.2025.11161826
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31862
dc.keywordsExtreme value theory
dc.keywordsInterference prediction
dc.keywordsKernel density estimation
dc.keywordsLink adaptation
dc.keywordsPredictive radio resource allocation
dc.keywordsURLLC
dc.language.isoeng
dc.publisherIEEE
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofInternational Conference on Communications
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleUltra-high reliability by predictive interference management using extreme value theory
dc.typeConference Proceeding
dspace.entity.typePublication
person.familyNameErgen
person.givenNameSinem Çöleri
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files