Publication:
Ultra-High Reliability by Predictive Interference Management Using Extreme Value Theory

dc.conference.locationMontreal; QC
dc.contributor.coauthorSalehi, Fateme (57191872775)
dc.contributor.coauthorMahmood, Aamir (36024046600)
dc.contributor.coauthorColeri, Sinem (9133370600)
dc.contributor.coauthorGidlund, Mikael (25641313800)
dc.date.accessioned2025-12-31T08:25:20Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractUltra-reliable low-latency communications (URLLC) require innovative approaches to modeling channel and interference dynamics, extending beyond traditional average estimates to encompass entire statistical distributions, including rare and extreme events that challenge achieving ultra-reliability performance regions. In this paper, we propose a risk-sensitive approach based on extreme value theory (EVT) to predict the signal-to-interference-plus-noise ratio (SINR) for efficient resource allocation in URLLC systems. We employ EVT to estimate the statistics of rare and extreme interference values, and kernel density estimation (KDE) to model the distribution of non-extreme events. Using a mixture model, we develop an interference prediction algorithm based on quantile prediction, introducing a confidence level parameter to balance reliability and resource usage. While accounting for the risk sensitivity of interference estimates, the prediction outcome is then used for appropriate resource allocation of a URLLC transmission under link outage constraints. Simulation results demonstrate that the proposed method outperforms the state-of-the-art first-order discrete-time Markov chain (DTMC) approach by reducing outage rates up to 100 -fold, achieving target outage probabilities as low as 10-7). Simultaneously, it minimizes radio resource usage ∼ 15% compared to DTMC, while remaining only ∼ 20% above the optimal case with perfect interference knowledge, resulting in significantly higher prediction accuracy. Additionally, the method is sample-efficient, able to predict interference effectively with minimal training data. © 2025 Elsevier B.V., All rights reserved.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipKnowledge Foundation; Nanjing Institute of Industry Technology, NIIT; (121C314)
dc.identifier.doi10.1109/ICC52391.2025.11161826
dc.identifier.eissn0536-1486
dc.identifier.embargoNo
dc.identifier.endpage2543
dc.identifier.isbn9781538674628
dc.identifier.isbn9781612842332
dc.identifier.isbn0780300068
dc.identifier.isbn9781467331227
dc.identifier.isbn9781538680889
dc.identifier.isbn078030599X
dc.identifier.isbn9781424403530
dc.identifier.isbn0780309510
dc.identifier.isbn9781612849553
dc.identifier.isbn9781467381963
dc.identifier.issn1550-3607
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105018457686
dc.identifier.startpage2538
dc.identifier.urihttps://doi.org/10.1109/ICC52391.2025.11161826
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31862
dc.keywordsextreme value theory
dc.keywordsinterference prediction
dc.keywordskernel density estimation
dc.keywordslink adaptation
dc.keywordspredictive radio resource allocation
dc.keywordsURLLC
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofInternational Conference on Communications
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleUltra-High Reliability by Predictive Interference Management Using Extreme Value Theory
dc.typeConference Proceeding
dspace.entity.typePublication

Files