Publication:
Ransac-based training data selection for speaker state recognition

dc.contributor.coauthorErdem, Çiğdem Eroğlu
dc.contributor.coauthorErdem, A. Tanju
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorBozkurt, Elif
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid34503
dc.date.accessioned2024-11-10T00:00:05Z
dc.date.issued2011
dc.description.abstractWe present a Random Sampling Consensus (RANSAC) based training approach for the problem of speaker state recognition from spontaneous speech. Our system is trained and tested with the INTERSPEECH 2011 Speaker State Challenge corpora that includes the Intoxication and the Sleepiness Sub-challenges, where each sub-challenge defines a two-class classification task. We aim to perform a RANSAC-based training data selection coupled with the Support Vector Machine (SVM) based classification to prune possible outliers, which exist in the training data. Our experimental evaluations indicate that utilization of RANSAC-based training data selection provides 66.32 % and 65.38 % unweighted average (UA) recall rate on the development and test sets for the Sleepiness Sub-challenge, respectively and a slight improvement on the Intoxication Sub-challenge performance.
dc.description.indexedbyWoS
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.identifier.doiN/A
dc.identifier.isbn978-1-61839-270-1
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84865741850
dc.identifier.uriN/A
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15750
dc.identifier.wos316502201314
dc.keywordsSpeaker state challenge
dc.keywordsIntoxication
dc.keywordsSleepiness
dc.keywordsRansac
dc.languageEnglish
dc.publisherIsca-Int Speech Communication Assoc
dc.source12th Annual Conference of the International Speech Communication Association 2011 (Interspeech 2011), Vols 1-5
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectComputer science
dc.subjectEngineering
dc.subjectElectrical electronic engineering
dc.titleRansac-based training data selection for speaker state recognition
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0002-2715-2368
local.contributor.kuauthorBozkurt, Elif
local.contributor.kuauthorErzin, Engin
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files