Publication:
Shrinkage as activation for learned image compression

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorKırmemiş, Ogün
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T12:47:15Z
dc.date.issued2020
dc.description.abstractWith recent advances in learned entropy and context models, the rate-distortion performance of deep learned image compression methods reached or surpassed those of conventional codecs. However, learned image compression is currently more complex and slower than conventional image compression. Learned image and video compression methods almost exclusively employ the generalized divisive normalization (GDN) activation function. This paper investigates the effect of activation function on the performance of image compression in terms of both objective and subjective criteria as well as runtime. In particular, we show that the distribution of latents produced by hard shrinkage fits a Laplacian better, and it is possible to achieve similar rate-distortion and better visual performance using hard shrinkage with lower complexity.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipTurkish Academy of Sciences (TUBA)
dc.description.versionAuthor's final manuscript
dc.identifier.doi10.1109/ICIP40778.2020.9190974
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03485
dc.identifier.isbn9781728163956
dc.identifier.issn1522-4880
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85098622799
dc.identifier.urihttps://doi.org/10.1109/ICIP40778.2020.9190974
dc.identifier.wos646178501081
dc.keywordsLearned image compression
dc.keywordsGeneralized divisive normalization
dc.keywordsHard shrinkage
dc.keywordsGaussian priors
dc.keywordsLaplacian priors
dc.keywordsKL divergence
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantno2.17E+35
dc.relation.ispartof2020 IEEE International Conference on Image Processing (ICIP)
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10277
dc.subjectImaging science
dc.subjectPhotographic technology
dc.titleShrinkage as activation for learned image compression
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorTekalp, Ahmet Murat
local.contributor.kuauthorKırmemiş, Ogün
local.publication.orgunit1College of Engineering
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit2Department of Electrical and Electronics Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10277.pdf
Size:
318.95 KB
Format:
Adobe Portable Document Format