Publication:
Calcium Alginate Aerogel-MIL160 Nanocomposites for CO2 Removal

dc.contributor.coauthorYousefzadeh, Hamed
dc.contributor.coauthorYurdusen, Aysu
dc.contributor.coauthorTuter, Ayca
dc.contributor.coauthorAksu, Gokhan O.
dc.contributor.coauthorMouchaham, Georges
dc.contributor.coauthorKeskin, Seda
dc.contributor.coauthorSerre, Christian
dc.contributor.coauthorErkey, Can
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentKUTEM (Koç University Tüpraş Energy Center)
dc.contributor.departmentKUHyTech (Koç University Hydrogen Technologies Center)
dc.contributor.kuauthorResearcher, Yousefzadeh, Hamed
dc.contributor.kuauthorPhD Student, Aksu, Gökhan Önder
dc.contributor.kuauthorFaculty Member, Keskin, Seda
dc.contributor.kuauthorFaculty Member, Erkey, Can
dc.contributor.kuauthorPhD Student, Tüter Semercioğlu, Ayça
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-09-10T04:57:57Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractUsing MOFs in powder form leads to mass transfer limitations and large pressure drops in packed bed adsorbers. Use of MOF/aerogel composites (called MOFACs) in bead form could overcome these challenges without compromising the MOF's adsorption performance, as observed with other shaping methods, such as the use of polymeric binders. In this study, Ca-alginate-aerogel-MIL-160(Al) MOFACs (AlgMIL160) were prepared via sol/gel-assisted direct mixing methods, followed by supercritical drying. The gas sorption, powder X-ray diffraction, FTIR, and scanning electron microscopy characterization results showed that the MOF was successfully incorporated into the aerogel, while the MOF structure was preserved. Adsorption measurements were carried out in both static single-component and dynamic binary gas mixture modes. Obtained isotherms were successfully fitted to the Langmuir model followed by ideal adsorbed solution theory (IAST). The single-component gas adsorption isotherms of CO2 on MOFACs with MIL-160(Al) loadings of 25, 50, and 75 wt % revealed a CO2 uptake of 0.43, 0.70, and 0.98 mmol/g at 150 mbar and 25 degrees C which were higher than that of pure MOF (1.23 mmol/g) based on the MOF loading in the composites, showing the synergistic effect of aerogel and MOF composites. Incorporation of MIL-160(Al) into the aerogel network which is comprised of 75% MIL-160(Al) and 25% Ca-alginate aerogel enhanced MIL-160(Al)'s CO2/N2 IAST selectivity from 53 to 70 at 25 degrees C and 1000 mbar. Both experimental and simulated CO2 adsorption isotherms showed good agreement. The dynamic adsorption performance of the MOFACs studied by using a binary mixture of 15% CO2/85% N2 was close to the single-component CO2 adsorption with slightly decreased uptake showing the competitive adsorptions between CO2 and N2 molecules. This novel nanocomposite with remarkable CO2 capture performance can be used in gas adsorbers without causing large pressure drops.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipAgence Nationale de la Recherche [121N709]; Turkish Scientific and Technological Research Council (TÜBİTAK) [ANR-21-MERA-0006, MOFAC2CAP]; Agence Nationale de la Rescherche (ANR); Koc University Surface Science and Technology Center (KUYTAM); Agence Nationale de la Recherche (ANR) [ANR-21-MERA-0006] Funding Source: Agence Nationale de la Recherche (ANR)
dc.description.versionPublished Version
dc.description.volume41
dc.identifier.doi10.1021/acs.langmuir.5c00143
dc.identifier.eissn1520-5827
dc.identifier.embargoNo
dc.identifier.endpage11922
dc.identifier.filenameinventorynoIR06474
dc.identifier.issn0743-7463
dc.identifier.issue19
dc.identifier.quartileN/A
dc.identifier.startpage11912
dc.identifier.urihttps://doi.org/10.1021/acs.langmuir.5c00143
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30301
dc.identifier.wos001484230000001
dc.language.isoeng
dc.publisherAmer Chemical Soc
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofLangmuir
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectChemistry, Multidisciplinary
dc.subjectChemistry, Physical
dc.subjectMaterials Science, Multidisciplinary
dc.titleCalcium Alginate Aerogel-MIL160 Nanocomposites for CO2 Removal
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication6ce65247-25c7-415b-a771-a9f0249b3a40
relation.isOrgUnitOfPublicationbc81eb66-ba68-4a3a-a17c-0ea8cc4b80ae
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR06474.pdf
Size:
8.46 MB
Format:
Adobe Portable Document Format