Publication:
Navigating the potential and pitfalls of large language models in patient-centered medication guidance and self-decision support

dc.contributor.coauthorKarabacak, Mert
dc.contributor.coauthorVlachos, Victoria
dc.contributor.coauthorMargetis, Konstantinos
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorAydın, Serhat
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2025-05-22T10:33:29Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractLarge Language Models (LLMs) are transforming patient education in medication management by providing accessible information to support healthcare decision-making. Building on our recent scoping review of LLMs in patient education, this perspective examines their specific role in medication guidance. These artificial intelligence (AI)-driven tools can generate comprehensive responses about drug interactions, side effects, and emergency care protocols, potentially enhancing patient autonomy in medication decisions. However, significant challenges exist, including the risk of misinformation and the complexity of providing accurate drug information without access to individual patient data. Safety concerns are particularly acute when patients rely solely on AI-generated advice for self-medication decisions. This perspective analyzes current capabilities, examines critical limitations, and raises questions regarding the possible integration of LLMs in medication guidance. We emphasize the need for regulatory oversight to ensure these tools serve as supplements to, rather than replacements for, professional healthcare guidance.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.versionPublished Version
dc.identifier.doi10.3389/fmed.2025.1527864
dc.identifier.embargoNo
dc.identifier.filenameinventorynoIR06182
dc.identifier.issn2296-858X
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85216949986
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29282
dc.identifier.urihttps://doi.org/10.3389/fmed.2025.1527864
dc.identifier.volume12
dc.identifier.wos001414010700001
dc.keywordsArtificial intelligence
dc.keywordsChatGPT
dc.keywordsDeep learning
dc.keywordsLarge language models
dc.keywordsMachine learning
dc.keywordsPatient education
dc.keywordsSelf-medication
dc.language.isoeng
dc.publisherFrontiers Media SA
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofFrontiers in Medicine
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMedicine
dc.titleNavigating the potential and pitfalls of large language models in patient-centered medication guidance and self-decision support
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameAydın
person.givenNameSerhat
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery17f2dc8e-6e54-4fa8-b5e0-d6415123a93e

Files