Publication:
Attractors for damped quintic wave equations in bounded domains

dc.contributor.coauthorSavostianov, Anton
dc.contributor.coauthorZelik, Sergey
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorKalantarov, Varga
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-10T00:02:25Z
dc.date.issued2016
dc.description.abstractThe dissipative wave equation with a critical quintic non-linearity in smooth bounded three-dimensional domain is considered. Based on the recent extension of the Strichartz estimates to the case of bounded domains, the existence of a compact global attractor for the solution semigroup of this equation is established. Moreover, the smoothness of the obtained attractor is also shown.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue9
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipRussian Ministry of Education and Science [8502] This work is partially supported by the Russian Ministry of Education and Science (contract no. 8502).
dc.description.volume17
dc.identifier.doi10.1007/s00023-016-0480-y
dc.identifier.eissn1424-0661
dc.identifier.issn1424-0637
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-84964033679
dc.identifier.urihttps://doi.org/10.1007/s00023-016-0480-y
dc.identifier.urihttps://hdl.handle.net/20.500.14288/16143
dc.identifier.wos382400800009
dc.keywordsCahn-hilliard equation
dc.keywordsEnergy critical waves
dc.keywordsAsymptotic regularity
dc.keywordsGlobal existence
dc.keywordsBehavior
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofAnnales Henri Poincare
dc.subjectPhysics, multidisciplinary
dc.subjectPhysics, particles and fields
dc.subjectPhysics, mathematical
dc.titleAttractors for damped quintic wave equations in bounded domains
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorKalantarov, Varga
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files