Publication:
Federated learning for hybrid beamforming in mm-wave massive MIMO

dc.contributor.coauthorElbir, Ahmet M.
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorErgen, Sinem Çöleri
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T13:12:13Z
dc.date.issued2020
dc.description.abstractMachine learning for hybrid beamforming has been extensively studied by using centralized machine learning (CML) techniques, which require the training of a global model with a large dataset collected from the users. However, the transmission of the whole dataset between the users and the base station (BS) is computationally prohibitive due to limited communication bandwidth and privacy concerns. In this work, we introduce a federated learning (FL) based framework for hybrid beamforming, where the model training is performed at the BS by collecting only the gradients from the users. We design a convolutional neural network, in which the input is the channel data, yielding the analog beamformers at the output. Via numerical simulations, FL is demonstrated to be more tolerant to the imperfections and corruptions in the channel data as well as having less transmission overhead than CML.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue12
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU - TÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipCHIST-ERA Grant
dc.description.sponsorshipFord Otosan
dc.description.versionAuthor's final manuscript
dc.description.volume24
dc.identifier.doi10.1109/LCOMM.2020.3019312
dc.identifier.eissn1558-2558
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02608
dc.identifier.issn1089-7798
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85097797840
dc.identifier.urihttps://doi.org/10.1109/LCOMM.2020.3019312
dc.identifier.wos597750400030
dc.keywordsTraining
dc.keywordsArray signal processing
dc.keywordsArtificial neural networks
dc.keywordsRadio frequency
dc.keywordsMIMO communication
dc.keywordsComputational modeling
dc.keywordsUnmanned aerial vehicles
dc.keywordsDeep learning
dc.keywordsFederated learning
dc.keywordsHybrid beamforming
dc.keywordsMassive MIMO
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantno1.79769313486232E+308
dc.relation.ispartofIEEE Communications Letters
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9247
dc.subjectTelecommunications
dc.titleFederated learning for hybrid beamforming in mm-wave massive MIMO
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorErgen, Sinem Çöleri
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9247.pdf
Size:
529.16 KB
Format:
Adobe Portable Document Format