Publication:
Inhibitor peptide design for NF- KB: Markov model and genetic algorithm

dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorÜnal, Evrim Besray
dc.contributor.kuauthorGürsoy, Attila
dc.contributor.kuauthorErman, Burak
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.otherDepartment of Chemical and Biological Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid8745
dc.contributor.yokid179997
dc.date.accessioned2024-11-09T22:57:27Z
dc.date.issued2010
dc.description.abstractTwo peptide design approaches are proposed to block activities of disease related proteins. First approach employs a probabilistic method; the problem is set as Markov chain. The possible binding site of target protein and a path on this binding site are determined. 20 natural amino acids and 400 dipeptides are docked to the selected path using the AutoDock software. The statistical weight matrices for the binding energies are derived from AutoDock results; matrices are used to determine top 100 peptide sequences with affinity to target protein. Second approach utilizes a heuristic method for peptide sequence determination; genetic algorithm (GA) with tournament selection. The amino acids are the genes; the peptide sequences are the chromosomes of GA. Initial random population of 100 chromosomes leads to determination of 100 possible binding peptides, after 8-10 generations of GA. Thermodynamic properties of the peptides are analyzed by a method that we proposed previously. NF-κB protein is selected as case-study.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipMiddle East Technical University
dc.description.sponsorshipInstitute of Electrical and Electronics Engineers (IEEE)
dc.description.sponsorshipTurkey Section
dc.identifier.doi10.1109/HIBIT.2010.5478904
dc.identifier.isbn9781-4244-5970-4
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-77954480377anddoi=10.1109%2fHIBIT.2010.5478904andpartnerID=40andmd5=0020f659c0c16a9f7cebbaa787d54333
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-77954480377
dc.identifier.urihttp://dx.doi.org/10.1109/HIBIT.2010.5478904
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7556
dc.keywordsGenetic algorithm
dc.keywordsInhibitor
dc.keywordsNf-κb
dc.keywordsPeptide design autodock
dc.keywordsBinding peptide
dc.keywordsBlock activity
dc.keywordsDi-peptides
dc.keywordsMarkov Chain
dc.keywordsMarkov model
dc.keywordsNatural amino acids
dc.keywordsPeptide design
dc.keywordsPeptide sequences
dc.keywordsProbabilistic methods
dc.keywordsStatistical weight
dc.keywordsTarget proteins
dc.keywordsTournament selection
dc.keywordsAmino acids
dc.keywordsBinding energy
dc.keywordsBioinformatics
dc.keywordsChromosomes
dc.keywordsDesign
dc.keywordsHeuristic methods
dc.keywordsMarkov processes
dc.keywordsOrganic acids
dc.keywordsPeptides
dc.keywordsThermodynamic properties
dc.languageEnglish
dc.publisherIEEE
dc.source2010 5th International Symposium on Health Informatics and Bioinformatics, HIBIT 2010
dc.subjectChemical engineering
dc.subjectBioengineering
dc.subjectBioinformatics
dc.titleInhibitor peptide design for NF- KB: Markov model and genetic algorithm
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0002-2297-2113
local.contributor.authorid0000-0002-2496-6059
local.contributor.kuauthorÜnal, Evrim Besray
local.contributor.kuauthorGürsoy, Attila
local.contributor.kuauthorErman, Burak
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files