Publication:
Photocatalytic performance of disordered titanium-based hollow nanosheet metal-organic frameworks in wastewater treatment

Placeholder

Organizational Units

Program

KU Authors

Co-Authors

Hassandoost, Ramin
Khataee, Alireza

Advisor

Publication Date

2024

Language

en

Type

Journal article

Journal Title

Journal ISSN

Volume Title

Abstract

Background: The low long-range order in the crystallinity of metal-organic frameworks (MOFs), commonly known as disordered MOFs, can lead to critical property variations. However, controlling the synthesis conditions for a reproducible outcome is somehow cumbersome, especially if this control is accompanied by morphology engineering to be utilized in photocatalysis where band structure, band gap, surface area, and porosity matter. Methods: Here, we report a crystal and structure-directing approach for the morphology engineering of NTU-9-like MOF aggregated particles (Ti-DHTA(AP)) (composed of Ti4+ and 2,5-dihydroxyterephthalic acid (DHTA)) into a hollow nanosheet (Ti-DHTA(HNS)) morphology. Triethylamine (TEA), here, acts as a structure-directing agent (SDA), and monodispersed polystyrene (PS) as a hard template. The three obtained Ti-DHTAs were eventually investigated in the photocatalytic removal of organic contaminants (dye and pharmaceuticals) and comprehensively characterized by (photo)electrochemical approaches. Significant Findings: The hollow nanosheet-architected Ti-DHTA(HNS) with a superior photocatalytic activity than the other morphologies also exhibits an overall photocatalytic removal (synergic adsorption-photodegradation) of similar to 6.5-fold higher than the commercial TiO2 (P25) under the visible light irradiation, with a degradation turnover (dTON) of 27 mmol h(-1) g(cat)(-1). Ti-DHTA(HNS) also shows promising results in the photocatalytic removal of dye and pharmaceutical wastewater. Photoelectrocatalytic characterizations were provided to compare the photocatalytic performance of synthesized Ti-DHTAs (e.g., in cyclic chronoamperometry (CA), 6-fold higher photoresponse than Ti-DHTA(AP)). Nyquist plots further exhibit that the charge transfer resistance (R-ct) of the unmodified Ti-DHTA(AP) is similar to 10-fold higher than Ti-DHTA(HNS) under visible light illumination. Furthermore, the actual water samples and the reusability of Ti-DHTA(HNS) were investigated. The addition of the radical scavenger agent can confirm the presence of varoius active radicals during the degradation, and hence, the formation of hydroxyl radicals was probed by adding o-phenylenediamine as a trapping agent. During methylene blue (MB) photodegradation, the LC-MS analysis exhibits acetoacetic acid formation (m/z = 102.03) as the dominant intermediate.

Description

Source:

Journal of the Taiwan Institute of Chemical Engineers

Publisher:

Elsevier

Keywords:

Subject

Engineering, chemical

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details