Publication:
Clustering grocery shopping paths of customers by using optimization-based models

dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Business Administration
dc.contributor.departmentDepartment of Industrial Engineering
dc.contributor.kuauthorYaman, Tuğba
dc.contributor.kuauthorKarabatı, Selçuk
dc.contributor.kuauthorKaraesmen, Fikri
dc.contributor.kuprofileMaster Student
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Business Administration
dc.contributor.otherDepartment of Industrial Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Administrative Sciences and Economics
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid38819
dc.contributor.yokid3579
dc.date.accessioned2024-11-09T22:57:21Z
dc.date.issued2008
dc.description.abstractThis study presents a preliminary investigation of shopping behavior of customers in a grocery store. Using each customer's in-store shopping path information, gathered by a wireless video camera that is affixed to the shopping cart, we classify customers into a predetermined number of clusters, and create a shopping path-based segmentation of customers. For this purpose a number of optimization models are developed. The results are presented in this paper. The next step is to analyze this collected data from different perspectives and developing different optimization models to achieve a better solution to the above clustering problem.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.identifier.doiN/A
dc.identifier.isbn978-9955-28-283-9
dc.identifier.scopus2-s2.0-84868248687
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7540
dc.identifier.wos258881100076
dc.keywordsClustering
dc.keywordsCustomer relationship management (CRM)
dc.keywordsShopping behavior
dc.keywordsMathematical programming
dc.keywordsRFID
dc.keywordsOptimization.
dc.languageEnglish
dc.publisherVilnius Gediminas Technical Univ Press, Technika
dc.source20th International Conference, Euro Mini Conference Continuous Optimization and Knowledge-Based Technologies, Europt'2008
dc.subjectComputer Science
dc.subjectArtificial intelligence
dc.subjectManagement
dc.subjectOperations research
dc.subjectManagement science
dc.subjectMathematics
dc.titleClustering grocery shopping paths of customers by using optimization-based models
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0001-6976-5405
local.contributor.authorid0000-0003-3851-6232
local.contributor.kuauthorYaman, Tuğba
local.contributor.kuauthorKarabatı, Selçuk
local.contributor.kuauthorKaraesmen, Fikri
relation.isOrgUnitOfPublicationca286af4-45fd-463c-a264-5b47d5caf520
relation.isOrgUnitOfPublicationd6d00f52-d22d-4653-99e7-863efcd47b4a
relation.isOrgUnitOfPublication.latestForDiscoveryca286af4-45fd-463c-a264-5b47d5caf520

Files