Publication: Adaptive mixture methods based on Bregman divergences
dc.contributor.coauthor | Kozat, Suleyman S. | |
dc.contributor.department | N/A | |
dc.contributor.department | N/A | |
dc.contributor.kuauthor | Dönmez, Mehmet Ali | |
dc.contributor.kuauthor | İnan, Hüseyin Atahan | |
dc.contributor.kuprofile | Master Student | |
dc.contributor.kuprofile | Master Student | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.yokid | N/A | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-09T23:04:54Z | |
dc.date.issued | 2013 | |
dc.description.abstract | We investigate adaptive mixture methods that linearly combine outputs of m constituent filters running in parallel to model a desired signal. We use Bregman divergences and obtain certain multiplicative updates to train the linear combination weights under an affine constraint or without any constraints. We use unnormalized relative entropy and relative entropy to define two different Bregman divergences that produce an unnormalized exponentiated gradient update and a normalized exponentiated gradient update on the mixture weights, respectively. We then carry out the mean and the mean-square transient analysis of these adaptive algorithms when they are used to combine outputs of m constituent filters. We illustrate the accuracy of our results and demonstrate the effectiveness of these updates for sparse mixture systems. (C) 2012 Published by Elsevier Inc. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 1 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.volume | 23 | |
dc.identifier.doi | 10.1016/j.dsp.2012.09.006 | |
dc.identifier.eissn | 1095-4333 | |
dc.identifier.issn | 1051-2004 | |
dc.identifier.scopus | 2-s2.0-84869502210 | |
dc.identifier.uri | http://dx.doi.org/10.1016/j.dsp.2012.09.006 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/8720 | |
dc.identifier.wos | 312171000009 | |
dc.keywords | Adaptive mixture | |
dc.keywords | Bregman divergence | |
dc.keywords | Affine mixture | |
dc.keywords | Multiplicative update affine combination | |
dc.keywords | Convex combination | |
dc.keywords | Algorithms | |
dc.keywords | Identification | |
dc.language | English | |
dc.publisher | Academic Press Inc Elsevier Science | |
dc.source | Digital Signal Processing | |
dc.subject | Engineering | |
dc.subject | Electrical electronic engineering | |
dc.title | Adaptive mixture methods based on Bregman divergences | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | N/A | |
local.contributor.authorid | N/A | |
local.contributor.kuauthor | Dönmez, Mehmet Ali | |
local.contributor.kuauthor | İnan, Hüseyin Atahan |