Publication:
Liquid metal-elastomer composites with dual-energy transmission mode for multifunctional miniature untethered magnetic robots

dc.contributor.coauthorZhang, Jiachen
dc.contributor.coauthorSoon, Ren Hao
dc.contributor.coauthorWei, Zihan
dc.contributor.coauthorHu, Wenqi
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid297104
dc.date.accessioned2024-11-09T12:26:24Z
dc.date.issued2022
dc.description.abstractMiniature untethered robots attract growing interest as they have become more functional and applicable to disruptive biomedical applications recently. Particularly, the soft ones among them exhibit unique merits of compliance, versatility, and agility. With scarce onboard space, these devices mostly harvest energy from environment or physical fields, such as magnetic and acoustic fields and patterned lights. In most cases, one device only utilizes one energy transmission mode (ETM) in powering its activities to achieve programmed tasks, such as locomotion and object manipulation. But real-world tasks demand multifunctional devices that require more energy in various forms. This work reports a liquid metal-elastomer composite with dual-ETM using one magnetic field for miniature untethered multifunctional robots. The first ETM uses the low-frequency (<100 Hz) field component to induce shape-morphing, while the second ETM employs energy transmitted via radio-frequency (20 kHz-300 GHz) induction to power onboard electronics and generate excess heat, enabling new capabilities. These new functions do not disturb the shape-morphing actuated using the first ETM. The reported material enables the integration of electric and thermal functionalities into soft miniature robots, offering a wealth of inspirations for multifunctional miniature robots that leverage developments in electronics to exhibit usefulness beyond self-locomotion.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue31
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipAlexander von Humboldt Foundation
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipAdvanced Grant
dc.description.sponsorshipSoMMoR Project
dc.description.sponsorshipProjekt DEAL
dc.description.versionPublisher version
dc.description.volume9
dc.formatpdf
dc.identifier.doi10.1002/advs.202203730
dc.identifier.eissn2198-3844
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03978
dc.identifier.linkhttps://doi.org/10.1002/advs.202203730
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85137328922
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1679
dc.identifier.wos850114700001
dc.keywordsLiquid metal
dc.keywordsMagnetic soft composite
dc.keywordsMiniature mobile robotics
dc.keywordsSoft robotics
dc.keywordsWireless energy transmission
dc.languageEnglish
dc.publisherWiley
dc.relation.grantno834531
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10841
dc.sourceAdvanced Science
dc.subjectChemistry
dc.subjectNanoscience and nanotechnology
dc.subjectMaterials science
dc.titleLiquid metal-elastomer composites with dual-energy transmission mode for multifunctional miniature untethered magnetic robots
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10841.pdf
Size:
2.39 MB
Format:
Adobe Portable Document Format