Publication:
Surface modified TiO2/reduced graphite oxide nanocomposite anodes for lithium ion batteries

dc.contributor.coauthorSlabon, Adam
dc.contributor.coauthorAfyon, Semih
dc.contributor.departmentDepartment of Chemistry
dc.contributor.departmentDepartment of Chemistry
dc.contributor.departmentN/A
dc.contributor.kuauthorSubaşı, Yaprak
dc.contributor.kuauthorSomer, Mehmet Suat
dc.contributor.kuauthorYağcı, Mustafa Barış
dc.contributor.kuprofileResearcher
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileResearcher
dc.contributor.otherDepartment of Chemistry
dc.contributor.researchcenterKoç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM)
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.yokidN/A
dc.contributor.yokid178882
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T22:49:35Z
dc.date.issued2020
dc.description.abstractAnatase TiO2 nanoparticles with an average crystallite size of ~ 20 nm are synthesized through a sol-gel method. A composite anode for Li-ion batteries is prepared with the synthesized TiO2 nanoparticles and reduced graphite oxide (RGO) as the conductive carbon source. After the preparation of TiO2/RGO nanocomposite, a novel surface modification is carried out by the employment of H2O2 to enhance the overall electrochemical performance of nanocomposite anode (TiO2/RGO-P composite). The physical and chemical characterizations of the surface modified TiO2/RGO-P composites are performed with X-ray powder diffraction (XRPD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) analyses. The electrochemical performance of TiO2/RGO-P composite electrodes is investigated via galvanostatic charge-discharge cycling tests in a potential window of 1.0-3.0 V. Compared to the plain TiO2/RGO composite anode, the TiO2/RGO-P composite anode has higher reversible capacities and better cycling performance due to the enhanced and stable formation of 3D channels of TiO2 nanoparticles with RGO stemming from the surface modification with H2O2. The TiO2/RGO-P composite anode delivers reversible discharge capacities around 291 mA h g(-1) at a rate of 100 mA g(-1), whereas the value stays at 214 and 143 mA h g(-1) for the plain TiO2/RGO composite and TiO2 nanoparticle without any RGO, respectively.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue5
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.volume24
dc.identifier.doi10.1007/s10008-020-04566-6
dc.identifier.eissn1433-0768
dc.identifier.issn1432-8488
dc.identifier.quartileQ4
dc.identifier.scopus2-s2.0-85083765936
dc.identifier.urihttp://dx.doi.org/10.1007/s10008-020-04566-6
dc.identifier.urihttps://hdl.handle.net/20.500.14288/6531
dc.identifier.wos534838700001
dc.keywordsLi-ion batteries
dc.keywordsAnodeTiO2 nanoparticles
dc.keywordsReduced graphite oxide
dc.keywordsHydrogen peroxide
dc.keywordsAnatase
dc.languageEnglish
dc.publisherSpringer
dc.sourceJournal of Solid State Electrochemistry
dc.subjectElectrochemistry
dc.titleSurface modified TiO2/reduced graphite oxide nanocomposite anodes for lithium ion batteries
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-2718-7771
local.contributor.authorid0000-0001-5606-9101
local.contributor.authorid0000-0003-1087-875X
local.contributor.kuauthorSubaşı, Yaprak
local.contributor.kuauthorSomer, Mehmet Suat
local.contributor.kuauthorYağcı, Mustafa Barış
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files