Publication:
User isolation poisoning on decentralized federated learning: an adversarial message-passing graph neural network approach

dc.contributor.coauthorLi, Kai
dc.contributor.coauthorLiang, Yilei
dc.contributor.coauthorLio, Pietro
dc.contributor.coauthorNi, Wei
dc.contributor.coauthorDressler, Falko
dc.contributor.coauthorCrowcroft, Jon
dc.contributor.departmentNext Generation and Wireless Communication Laboratory
dc.contributor.kuauthorAkan, Özgür Barış
dc.contributor.schoolcollegeinstituteLaboratory
dc.date.accessioned2026-01-16T08:47:23Z
dc.date.available2026-01-16
dc.date.issued2025
dc.description.abstractThis article proposes a new cyberattack on decentralized federated learning (DFL), named user isolation poisoning (UIP). While following the standard DFL protocol of receiving and aggregating benign local models, a malicious user strategically generates and distributes compromised updates to undermine the learning process. The objective of the new UIP attack is to diminish the impact of benign users by isolating their model updates, thereby manipulating the shared model to reduce the learning accuracy. To realize this attack, we design a novel threat model that leverages an adversarial message-passing graph (MPG) neural network. Through iterative message passing, the adversarial MPG progressively refines the representations (also known as embeddings or hidden states) of each benign local model update. By orchestrating feature exchanges among connected nodes in a targeted manner, the malicious users effectively curtail the genuine data features of benign local models, thereby diminishing their overall influence within the DFL process. The MPG-based UIP attack is implemented in PyTorch, demonstrating that it effectively reduces the test accuracy of DFL by 49.5% and successfully evades existing cosine similarity- and Euclidean distance-based defense strategies.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipStartup Fund from the College of Computing and Software Engineering, Kennesaw State University; Fundacao para a Ciencia e a Tecnologia (Portuguese Foundation for Science and Technology) through the Carnegie Mellon Portugal Program; AXA Research Fund (AXA Chair for Internet of Everything at Koc University)
dc.identifier.doi10.1109/TNNLS.2025.3636440
dc.identifier.eissn2162-2388
dc.identifier.embargoNo
dc.identifier.issn2162-237X
dc.identifier.pubmed41329589
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105023853655
dc.identifier.urihttps://doi.org/10.1109/TNNLS.2025.3636440
dc.identifier.urihttps://hdl.handle.net/20.500.14288/32149
dc.identifier.wos001632056600001
dc.keywordsComputational modeling
dc.keywordsData models
dc.keywordsTraining
dc.keywordsAccuracy
dc.keywordsElectronic mail
dc.keywordsCorrelation
dc.keywordsServers
dc.keywordsEuclidean distance
dc.keywordsComputer science
dc.keywordsThreat modeling
dc.keywordsDecentralized federated learning (DFL)
dc.keywordsMessage-passing graph (MPG) neural networks
dc.keywordsModel correlations
dc.keywordsPoisoning attack
dc.keywordsUser isolation
dc.language.isoeng
dc.publisherIEEE
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofIEEE Transactions on Neural Networks and Learning Systems
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.subjectArtificial intelligence
dc.subjectComputer science
dc.subjectElectrical and electronic engineering
dc.titleUser isolation poisoning on decentralized federated learning: an adversarial message-passing graph neural network approach
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameAkan
person.givenNameÖzgür Barış
relation.isOrgUnitOfPublicationa5d3121b-8789-4c71-84d3-12bf643bfef9
relation.isOrgUnitOfPublication.latestForDiscoverya5d3121b-8789-4c71-84d3-12bf643bfef9
relation.isParentOrgUnitOfPublication20385dee-35e7-484b-8da6-ddcc08271d96
relation.isParentOrgUnitOfPublication.latestForDiscovery20385dee-35e7-484b-8da6-ddcc08271d96

Files