Publication:
Localized symmetry breaking for tuning thermal expansion in ScF3 nanoscale frameworks

dc.contributor.coauthorHu, Lei
dc.contributor.coauthorQin, Feiyu
dc.contributor.coauthorSanson, Andrea
dc.contributor.coauthorHuang, Liang-Feng
dc.contributor.coauthorPan, Zhao
dc.contributor.coauthorLi, Qiang
dc.contributor.coauthorSun, Qiang
dc.contributor.coauthorWang, Lu
dc.contributor.coauthorGuo, Fangmin
dc.contributor.coauthorRen, Yang
dc.contributor.coauthorSun, Chengjun
dc.contributor.coauthorDeng, Jinxia
dc.contributor.coauthorAquilanti, Giuliana
dc.contributor.coauthorRondinelli, James M.
dc.contributor.coauthorChen, Jun
dc.contributor.coauthorXing, Xianran
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorAydemir, Umut
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:11:08Z
dc.date.issued2018
dc.description.abstractThe local symmetry, beyond the averaged crystallographic structure, tends to bring unusual performances. Negative thermal expansion is a peculiar physical property of solids. Here, we report the delicate design of the localized symmetry breaking to achieve controllable thermal expansion in ScF3 nanoscale frameworks. Intriguingly, an isotropic zero thermal expansion is concurrently engineered by localized symmetry breaking, with a remarkably low coefficient of thermal expansion of about +4.0 X 10(-8)/K up to 675 K. This mechanism is investigated by the joint analysis of atomic pair distribution function of synchrotron X-ray total scattering and extended X-ray absorption fine structure spectra. A localized rhombohedral distortion presumably plays a critical role in stiffening ScF3 nanoscale frameworks and concomitantly suppressing transverse thermal vibrations of fluorine atoms. This physical scenario is also theoretically corroborated by the extinction of phonon modes with negative Gruneisen parameters in rhombohedral ScF3. The present work opens an untraditional chemical modification route to achieve controllable thermal expansion by breaking local symmetries in materials.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue13
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipNational Natural Science Foundation of China [91422301, 21231001, 21590793]
dc.description.sponsorshipChangjiang Young Scholars Award
dc.description.sponsorshipNational Program for Support of Top-notch Young Professionals
dc.description.sponsorshipFundamental Research Funds for the Central Universities, China
dc.description.sponsorshipSpecial Foundation of the Director of Technical Institute of Physics and Chemistry
dc.description.sponsorshipOffice of Naval Research [N00014-16-1-2280]
dc.description.sponsorshipNational Science Foundation [DMR-1454688]
dc.description.sponsorshipU.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
dc.description.sponsorshipDivision of Materials Research
dc.description.sponsorshipDirect For Mathematical & Physical Scien [1454688] Funding Source: National Science Foundation This work was supported by the National Natural Science Foundation of China (grant nos. 91422301, 21231001, and 21590793), the Changjiang Young Scholars Award, the National Program for Support of Top-notch Young Professionals, the Fundamental Research Funds for the Central Universities, China, and the Special Foundation of the Director of Technical Institute of Physics and Chemistry. L.F.H. and J.M.R. were supported by the Office of Naval Research under Grant No. N00014-16-1-2280 and the National Science Foundation under Grant No. DMR-1454688. The use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-AC02-06CH11357). We acknowledge the ELETTRA Synchrotron Radiation Facility for provision of synchrotron radiation as well as all the staff of the XAFS beamline. We also thanks for the discussion with Prof. G. Jeffrey Snyder.
dc.description.volume140
dc.identifier.doi10.1021/jacs.8b00885
dc.identifier.eissn1520-5126
dc.identifier.issn0002-7863
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85044944526
dc.identifier.urihttps://doi.org/10.1021/jacs.8b00885
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9569
dc.identifier.wos429508600004
dc.keywordsCubic SCF3
dc.keywordsZero
dc.keywordsFerromagnetism
dc.keywordsFe
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofJournal of the American Chemical Society
dc.subjectChemistry, multidisciplinary
dc.titleLocalized symmetry breaking for tuning thermal expansion in ScF3 nanoscale frameworks
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorAydemir, Umut
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Chemistry
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files