Publication:
Number of prime ideals in short intervals

dc.contributor.departmentDepartment of Mathematics
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorAlkan, Emre
dc.contributor.kuauthorMehreliyev, Tevekkul
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T23:27:55Z
dc.date.issued2016
dc.description.abstractAssuming a weaker form of the Riemann hypothesis for Dedekind zeta functions by allowing Siegel zeros, we extend a classical result of Cramer on the number of primes in short intervals to prime ideals of the ring of integers in cyclotomic extensions with norms belonging to such intervals. The extension is uniform with respect to the degree of the cyclotomic extension. Our approach is based on the arithmetic of cyclotomic fields and analytic properties of their Dedekind zeta functions together with a lower bound for the number of primes over progressions in short intervals subject to similar assumptions. Uniformity with respect to the modulus of the progression is obtained and the lower bound turns out to be best possible, apart from constants, as shown by the Brun-Titchmarsh theorem.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume167
dc.identifier.doi10.1016/j.jnt.2016.03.003
dc.identifier.eissn1096-1658
dc.identifier.issn0022-314X
dc.identifier.scopus2-s2.0-84969256141
dc.identifier.urihttps://doi.org/10.1016/j.jnt.2016.03.003
dc.identifier.urihttps://hdl.handle.net/20.500.14288/11790
dc.identifier.wos377056400025
dc.keywordsCyclotomic extension
dc.keywordsPrime ideal
dc.keywordsPrimes in a progression
dc.keywordsDedekind zeta function
dc.keywordsDirichlet L-function
dc.keywordsBranch of complex logarithm
dc.keywordsLinear forms in logarithms
dc.keywordsSiegel zero
dc.keywordsFourier coefficients
dc.keywordsModular-forms
dc.language.isoeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relation.ispartofJournal of Number Theory
dc.subjectMathematics
dc.titleNumber of prime ideals in short intervals
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorAlkan, Emre
local.contributor.kuauthorMehreliyev, Tevekkul
local.publication.orgunit1College of Sciences
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit2Department of Mathematics
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files