Publication:
Frequency response of microcantilevers immersed in gaseous, liquid, and supercritical carbon dioxide

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Physics
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentKUTEM (Koç University Tüpraş Energy Center)
dc.contributor.kuauthorAlaca, Burhanettin Erdem
dc.contributor.kuauthorBeykal, Burcu
dc.contributor.kuauthorEhrlich, Katjana
dc.contributor.kuauthorErkey, Can
dc.contributor.kuauthorJonas, Alexandr
dc.contributor.kuauthorKiraz, Alper
dc.contributor.kuauthorŞanlı, Deniz
dc.contributor.kuauthorÜrey, Hakan
dc.contributor.kuauthorUzunlar, Erdal
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2024-11-09T23:29:37Z
dc.date.issued2013
dc.description.abstractThe frequency response of ferromagnetic nickel microcantilevers with lengths ranging between 200 mu m and 400 mu m immersed in gaseous, liquid and supercritical carbon dioxide (CO2) was investigated. the resonant frequency and the quality factor of the cantilever oscillations in CO2 were measured for each cantilever length in the temperature range between 298 K and 323 K and the pressure range between 0.1 MPa and 20.7 MPa. at a constant temperature, both the resonant frequency and the quality factor were found to decrease with increasing pressure as a result of the increasing CO2 density and viscosity. very good agreement was found between the measured cantilever resonant frequencies and predictions of a model based on simplified hydrodynamic function of a cantilever oscillating harmonically in a viscous fluid valid for Reynolds numbers in the range of [1;1000] (average deviation of 2.40%). at high pressures of CO2, the experimental Q-factors agreed well with the predicted ones. at low CO2 pressures, Additional internal mechanisms of the cantilever oscillation damping caused lowering of the measured Q-factor with respect to the hydrodynamic model predictions.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume81
dc.identifier.doi10.1016/j.supflu.2013.06.013
dc.identifier.eissn1872-8162
dc.identifier.issn0896-8446
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-84880954981
dc.identifier.urihttps://doi.org/10.1016/j.supflu.2013.06.013
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12074
dc.identifier.wos324450500031
dc.keywordsMicrocantilevers
dc.keywordsResonant frequency
dc.keywordsQuality factor
dc.keywordsCarbon dioxide
dc.keywordsSupercritical fluid
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofJournal of Supercritical Fluids
dc.subjectChemistry, Physical theoretical
dc.subjectChemical engineering
dc.titleFrequency response of microcantilevers immersed in gaseous, liquid, and supercritical carbon dioxide
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorUzunlar, Erdal
local.contributor.kuauthorBeykal, Burcu
local.contributor.kuauthorEhrlich, Katjana
local.contributor.kuauthorŞanlı, Deniz
local.contributor.kuauthorJonas, Alexandr
local.contributor.kuauthorAlaca, Burhanettin Erdem
local.contributor.kuauthorKiraz, Alper
local.contributor.kuauthorÜrey, Hakan
local.contributor.kuauthorErkey, Can
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit1College of Sciences
local.publication.orgunit1Research Center
local.publication.orgunit2Department of Chemical and Biological Engineering
local.publication.orgunit2Department of Physics
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
local.publication.orgunit2KUTEM (Koç University Tüpraş Energy Center)
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication6ce65247-25c7-415b-a771-a9f0249b3a40
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files