Publication: Communication by means of thermal noise: toward networks with extremely low power consumption
dc.contributor.department | Department of Electrical and Electronics Engineering | |
dc.contributor.kuauthor | Başar, Ertuğrul | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.date.accessioned | 2025-01-19T10:29:02Z | |
dc.date.issued | 2023 | |
dc.description.abstract | In this paper, the paradigm of thermal noise communication (TherCom) is put forward for future wired/wireless networks with extremely low power consumption. Taking backscatter communication (BackCom) and reconfigurable intelligent surface (RIS)-based radio frequency chain-free transmitters one step further, a thermal noise-driven transmitter might enable zero-signal-power transmission by simply indexing resistors or other noise sources according to information bits. This preliminary paper aims to shed light on the theoretical foundations, transceiver designs, and error performance derivations as well as optimizations of two emerging TherCom solutions: Kirchhoff-law-Johnson-noise (KLJN) secure bit exchange and wireless thermal noise modulation (TherMod) schemes. Our theoretical and computer simulation findings reveal that noise variance detection, supported by sample variance estimation with carefully optimized decision thresholds, is a reliable way of extracting the embedded information from noise modulated signals, even with limited number of noise samples. | |
dc.description.indexedby | WOS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 2 | |
dc.description.openaccess | Green Submitted | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.volume | 71 | |
dc.identifier.doi | 10.1109/TCOMM.2022.3228290 | |
dc.identifier.eissn | 1558-0857 | |
dc.identifier.issn | 0090-6778 | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-85144789900 | |
dc.identifier.uri | https://doi.org/10.1109/TCOMM.2022.3228290 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/25814 | |
dc.identifier.wos | 966555000001 | |
dc.keywords | Thermal noise | |
dc.keywords | Resistors | |
dc.keywords | Voltage measurement | |
dc.keywords | Thermal resistance | |
dc.keywords | Radio transmitters | |
dc.keywords | Power demand | |
dc.keywords | Noise measurement | |
dc.keywords | Thermal noise communication (TherCom) | |
dc.keywords | Kirchhoff-law-Johnson-noise (KLJN) | |
dc.keywords | Index Terms | |
dc.keywords | Thermal noise modulation (TherMod) | |
dc.keywords | Bit error probability | |
dc.language.iso | eng | |
dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc | |
dc.relation.ispartof | IEEE Transactions on Communications | |
dc.subject | Engineering, electrical and electronic | |
dc.subject | Telecommunications | |
dc.title | Communication by means of thermal noise: toward networks with extremely low power consumption | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Başar, Ertuğrul | |
local.publication.orgunit1 | College of Engineering | |
local.publication.orgunit2 | Department of Electrical and Electronics Engineering | |
relation.isOrgUnitOfPublication | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 |
Files
Original bundle
1 - 1 of 1