Publication:
Subspace methods for three-parameter eigenvalue problems

dc.contributor.coauthorHochstenbach, Michiel E.
dc.contributor.coauthorMeerbergen, Karl
dc.contributor.coauthorPlestenjak, Bor
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorMengi, Emre
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T13:19:04Z
dc.date.issued2019
dc.description.abstractWe propose subspace methods for three-parameter eigenvalue problems. Such problems arise when separation of variables is applied to separable boundary value problems; a particular example is the Helmholtz equation in ellipsoidal and paraboloidal coordinates. While several subspace methods for two-parameter eigenvalue problems exist, their extensions to a three-parameter setting seem challenging. An inherent difficulty is that, while for two-parameter eigenvalue problems, we can exploit a relation to Sylvester equations to obtain a fast Arnoldi-type method, such a relation does not seem to exist when there are three or more parameters. Instead, we introduce a subspace iteration method with projections onto generalized Krylov subspaces that are constructed from scratch at every iteration using certain Ritz vectors as the initial vectors. Another possibility is a Jacobi-Davidson-type method for three or more parameters, which we generalize from its two-parameter counterpart. For both approaches, we introduce a selection criterion for deflation that is based on the angles between left and right eigenvectors. The Jacobi-Davidson approach is devised to locate eigenvalues close to a prescribed target; yet, it often also performs well when eigenvalues are sought based on the proximity of one of the components to a prescribed target. The subspace iteration method is devised specifically for the latter task. The proposed approaches are suitable especially for problems where the computation of several eigenvalues is required with high accuracy. MATLAB implementations of both methods have been made available in the package MultiParEig (see https://www.mathworks.com/matlabcentral/fileexchange/47844-multipareig).
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipSlovenian Research Agency
dc.description.sponsorshipSlovenia and Turkey bilateral project
dc.description.sponsorshipNWO Vidi research grant
dc.description.versionAuthor's final manuscript
dc.description.volume26
dc.identifier.doi10.1002/nla.2240
dc.identifier.eissn1099-1506
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02047
dc.identifier.issn1070-5325
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85063786242
dc.identifier.urihttps://doi.org/10.1002/nla.2240
dc.identifier.wos474224800012
dc.keywordsArnoldi method
dc.keywordsBaer wave equation
dc.keywordsEllipsoidal wave equation
dc.keywordsJacobi-Davidson method
dc.keywordsMultiparameter eigenvalue problem
dc.keywordsTensor
dc.language.isoeng
dc.publisherWiley
dc.relation.grantno115F585
dc.relation.grantnoP1-0294
dc.relation.grantnoARRS-BI-TR/16-18-004
dc.relation.ispartofNumerical Linear Algebra with Applications
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8658
dc.subjectMathematics
dc.titleSubspace methods for three-parameter eigenvalue problems
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorMengi, Emre
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8658.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format