Publication: Inter genre similarity modeling for automatic music genre classification
dc.contributor.department | N/A | |
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.kuauthor | Bağcı, Ulaş | |
dc.contributor.kuauthor | Erzin, Engin | |
dc.contributor.kuprofile | Master Student | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.other | Department of Computer Engineering | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.yokid | N/A | |
dc.contributor.yokid | 34503 | |
dc.date.accessioned | 2024-11-09T23:13:36Z | |
dc.date.issued | 2013 | |
dc.description.abstract | Music genre classification is an essential tool for music information retrieval systems and it has been finding critical applications in various media platforms. Two important problems of the automatic music genre classification are feature extraction and classifier design. This paper investigates inter-genre similarity modelling (IGS) to improve the performance of automatic music genre classification. Inter-genre similarity information is extracted over the mis-classified feature population. Once the inter-genre similarity is modelled, elimination of the inter-genre similarity reduces the inter-genre confusion and improves the identification rates. Inter-genre similarity modelling is further improved with iterative IGS modelling(IIGS) and score modelling for IGS elimination( SMIGS). Experimental results with promising classification improvements are provided. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.identifier.doi | N/A | |
dc.identifier.issn | 2413-6700 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84872736027&partnerID=40&md5=0527c4825b9a28692f0a175a92044fa7 | |
dc.identifier.uri | N/A | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/10013 | |
dc.identifier.wos | 245347800162 | |
dc.keywords | Classification (of information) | |
dc.keywords | Music | |
dc.keywords | Search engines | |
dc.keywords | Classifier design | |
dc.keywords | Critical applications | |
dc.keywords | Feature classifiers | |
dc.keywords | Features extraction | |
dc.keywords | Information-retrieval systems | |
dc.keywords | Media platforms | |
dc.keywords | Music genre classification | |
dc.keywords | Music information retrieval | |
dc.keywords | Performance | |
dc.keywords | Similarity models | |
dc.keywords | Information retrieval systems | |
dc.language | English | |
dc.publisher | IEEE Computer Society | |
dc.source | Proceedings of the International Conference on Digital Audio Effects, DAFx | |
dc.subject | Computer science | |
dc.subject | Artificial intelligence | |
dc.subject | Engineering | |
dc.subject | Electrical electronic engineering | |
dc.subject | Imaging science | |
dc.subject | Photographic technology | |
dc.title | Inter genre similarity modeling for automatic music genre classification | |
dc.title.alternative | Müzik türlerinin sınıflandırılmasında benzer kesişim bilgileri uygulamaları | |
dc.type | Conference proceeding | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0001-7379-6829 | |
local.contributor.authorid | 0000-0002-2715-2368 | |
local.contributor.kuauthor | Bağcı, Ulaş | |
local.contributor.kuauthor | Erzin, Engin | |
relation.isOrgUnitOfPublication | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isOrgUnitOfPublication.latestForDiscovery | 89352e43-bf09-4ef4-82f6-6f9d0174ebae |